404

[ Avaa Bypassed ]




Upload:

Command:

elspacio@13.59.35.116: ~ $
"""
Basic statistics module.

This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages
--------------------

==================  =============================================
Function            Description
==================  =============================================
mean                Arithmetic mean (average) of data.
harmonic_mean       Harmonic mean of data.
median              Median (middle value) of data.
median_low          Low median of data.
median_high         High median of data.
median_grouped      Median, or 50th percentile, of grouped data.
mode                Mode (most common value) of data.
==================  =============================================

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625


Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5


Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...


Calculating variability or spread
---------------------------------

==================  =============================================
Function            Description
==================  =============================================
pvariance           Population variance of data.
variance            Sample variance of data.
pstdev              Population standard deviation of data.
stdev               Sample standard deviation of data.
==================  =============================================

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5


Exceptions
----------

A single exception is defined: StatisticsError is a subclass of ValueError.

"""

__all__ = [ 'StatisticsError',
            'pstdev', 'pvariance', 'stdev', 'variance',
            'median',  'median_low', 'median_high', 'median_grouped',
            'mean', 'mode', 'harmonic_mean',
          ]

import collections
import decimal
import math
import numbers

from fractions import Fraction
from decimal import Decimal
from itertools import groupby, chain
from bisect import bisect_left, bisect_right



# === Exceptions ===

class StatisticsError(ValueError):
    pass


# === Private utilities ===

def _sum(data, start=0):
    """_sum(data [, start]) -> (type, sum, count)

    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.

    If optional argument ``start`` is given, it is added to the total.
    If ``data`` is empty, ``start`` (defaulting to 0) is returned.


    Examples
    --------

    >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
    (<class 'float'>, Fraction(11, 1), 5)

    Some sources of round-off error will be avoided:

    # Built-in sum returns zero.
    >>> _sum([1e50, 1, -1e50] * 1000)
    (<class 'float'>, Fraction(1000, 1), 3000)

    Fractions and Decimals are also supported:

    >>> from fractions import Fraction as F
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)

    >>> from decimal import Decimal as D
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
    >>> _sum(data)
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)

    Mixed types are currently treated as an error, except that int is
    allowed.
    """
    count = 0
    n, d = _exact_ratio(start)
    partials = {d: n}
    partials_get = partials.get
    T = _coerce(int, type(start))
    for typ, values in groupby(data, type):
        T = _coerce(T, typ)  # or raise TypeError
        for n,d in map(_exact_ratio, values):
            count += 1
            partials[d] = partials_get(d, 0) + n
    if None in partials:
        # The sum will be a NAN or INF. We can ignore all the finite
        # partials, and just look at this special one.
        total = partials[None]
        assert not _isfinite(total)
    else:
        # Sum all the partial sums using builtin sum.
        # FIXME is this faster if we sum them in order of the denominator?
        total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
    return (T, total, count)


def _isfinite(x):
    try:
        return x.is_finite()  # Likely a Decimal.
    except AttributeError:
        return math.isfinite(x)  # Coerces to float first.


def _coerce(T, S):
    """Coerce types T and S to a common type, or raise TypeError.

    Coercion rules are currently an implementation detail. See the CoerceTest
    test class in test_statistics for details.
    """
    # See http://bugs.python.org/issue24068.
    assert T is not bool, "initial type T is bool"
    # If the types are the same, no need to coerce anything. Put this
    # first, so that the usual case (no coercion needed) happens as soon
    # as possible.
    if T is S:  return T
    # Mixed int & other coerce to the other type.
    if S is int or S is bool:  return T
    if T is int:  return S
    # If one is a (strict) subclass of the other, coerce to the subclass.
    if issubclass(S, T):  return S
    if issubclass(T, S):  return T
    # Ints coerce to the other type.
    if issubclass(T, int):  return S
    if issubclass(S, int):  return T
    # Mixed fraction & float coerces to float (or float subclass).
    if issubclass(T, Fraction) and issubclass(S, float):
        return S
    if issubclass(T, float) and issubclass(S, Fraction):
        return T
    # Any other combination is disallowed.
    msg = "don't know how to coerce %s and %s"
    raise TypeError(msg % (T.__name__, S.__name__))


def _exact_ratio(x):
    """Return Real number x to exact (numerator, denominator) pair.

    >>> _exact_ratio(0.25)
    (1, 4)

    x is expected to be an int, Fraction, Decimal or float.
    """
    try:
        # Optimise the common case of floats. We expect that the most often
        # used numeric type will be builtin floats, so try to make this as
        # fast as possible.
        if type(x) is float or type(x) is Decimal:
            return x.as_integer_ratio()
        try:
            # x may be an int, Fraction, or Integral ABC.
            return (x.numerator, x.denominator)
        except AttributeError:
            try:
                # x may be a float or Decimal subclass.
                return x.as_integer_ratio()
            except AttributeError:
                # Just give up?
                pass
    except (OverflowError, ValueError):
        # float NAN or INF.
        assert not _isfinite(x)
        return (x, None)
    msg = "can't convert type '{}' to numerator/denominator"
    raise TypeError(msg.format(type(x).__name__))


def _convert(value, T):
    """Convert value to given numeric type T."""
    if type(value) is T:
        # This covers the cases where T is Fraction, or where value is
        # a NAN or INF (Decimal or float).
        return value
    if issubclass(T, int) and value.denominator != 1:
        T = float
    try:
        # FIXME: what do we do if this overflows?
        return T(value)
    except TypeError:
        if issubclass(T, Decimal):
            return T(value.numerator)/T(value.denominator)
        else:
            raise


def _counts(data):
    # Generate a table of sorted (value, frequency) pairs.
    table = collections.Counter(iter(data)).most_common()
    if not table:
        return table
    # Extract the values with the highest frequency.
    maxfreq = table[0][1]
    for i in range(1, len(table)):
        if table[i][1] != maxfreq:
            table = table[:i]
            break
    return table


def _find_lteq(a, x):
    'Locate the leftmost value exactly equal to x'
    i = bisect_left(a, x)
    if i != len(a) and a[i] == x:
        return i
    raise ValueError


def _find_rteq(a, l, x):
    'Locate the rightmost value exactly equal to x'
    i = bisect_right(a, x, lo=l)
    if i != (len(a)+1) and a[i-1] == x:
        return i-1
    raise ValueError


def _fail_neg(values, errmsg='negative value'):
    """Iterate over values, failing if any are less than zero."""
    for x in values:
        if x < 0:
            raise StatisticsError(errmsg)
        yield x


# === Measures of central tendency (averages) ===

def mean(data):
    """Return the sample arithmetic mean of data.

    >>> mean([1, 2, 3, 4, 4])
    2.8

    >>> from fractions import Fraction as F
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
    Fraction(13, 21)

    >>> from decimal import Decimal as D
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
    Decimal('0.5625')

    If ``data`` is empty, StatisticsError will be raised.
    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 1:
        raise StatisticsError('mean requires at least one data point')
    T, total, count = _sum(data)
    assert count == n
    return _convert(total/n, T)


def harmonic_mean(data):
    """Return the harmonic mean of data.

    The harmonic mean, sometimes called the subcontrary mean, is the
    reciprocal of the arithmetic mean of the reciprocals of the data,
    and is often appropriate when averaging quantities which are rates
    or ratios, for example speeds. Example:

    Suppose an investor purchases an equal value of shares in each of
    three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
    What is the average P/E ratio for the investor's portfolio?

    >>> harmonic_mean([2.5, 3, 10])  # For an equal investment portfolio.
    3.6

    Using the arithmetic mean would give an average of about 5.167, which
    is too high.

    If ``data`` is empty, or any element is less than zero,
    ``harmonic_mean`` will raise ``StatisticsError``.
    """
    # For a justification for using harmonic mean for P/E ratios, see
    # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/
    # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087
    if iter(data) is data:
        data = list(data)
    errmsg = 'harmonic mean does not support negative values'
    n = len(data)
    if n < 1:
        raise StatisticsError('harmonic_mean requires at least one data point')
    elif n == 1:
        x = data[0]
        if isinstance(x, (numbers.Real, Decimal)):
            if x < 0:
                raise StatisticsError(errmsg)
            return x
        else:
            raise TypeError('unsupported type')
    try:
        T, total, count = _sum(1/x for x in _fail_neg(data, errmsg))
    except ZeroDivisionError:
        return 0
    assert count == n
    return _convert(n/total, T)


# FIXME: investigate ways to calculate medians without sorting? Quickselect?
def median(data):
    """Return the median (middle value) of numeric data.

    When the number of data points is odd, return the middle data point.
    When the number of data points is even, the median is interpolated by
    taking the average of the two middle values:

    >>> median([1, 3, 5])
    3
    >>> median([1, 3, 5, 7])
    4.0

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    if n%2 == 1:
        return data[n//2]
    else:
        i = n//2
        return (data[i - 1] + data[i])/2


def median_low(data):
    """Return the low median of numeric data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the smaller of the two middle values is returned.

    >>> median_low([1, 3, 5])
    3
    >>> median_low([1, 3, 5, 7])
    3

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    if n%2 == 1:
        return data[n//2]
    else:
        return data[n//2 - 1]


def median_high(data):
    """Return the high median of data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the larger of the two middle values is returned.

    >>> median_high([1, 3, 5])
    3
    >>> median_high([1, 3, 5, 7])
    5

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    return data[n//2]


def median_grouped(data, interval=1):
    """Return the 50th percentile (median) of grouped continuous data.

    >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
    3.7
    >>> median_grouped([52, 52, 53, 54])
    52.5

    This calculates the median as the 50th percentile, and should be
    used when your data is continuous and grouped. In the above example,
    the values 1, 2, 3, etc. actually represent the midpoint of classes
    0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
    class 3.5-4.5, and interpolation is used to estimate it.

    Optional argument ``interval`` represents the class interval, and
    defaults to 1. Changing the class interval naturally will change the
    interpolated 50th percentile value:

    >>> median_grouped([1, 3, 3, 5, 7], interval=1)
    3.25
    >>> median_grouped([1, 3, 3, 5, 7], interval=2)
    3.5

    This function does not check whether the data points are at least
    ``interval`` apart.
    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    elif n == 1:
        return data[0]
    # Find the value at the midpoint. Remember this corresponds to the
    # centre of the class interval.
    x = data[n//2]
    for obj in (x, interval):
        if isinstance(obj, (str, bytes)):
            raise TypeError('expected number but got %r' % obj)
    try:
        L = x - interval/2  # The lower limit of the median interval.
    except TypeError:
        # Mixed type. For now we just coerce to float.
        L = float(x) - float(interval)/2

    # Uses bisection search to search for x in data with log(n) time complexity
    # Find the position of leftmost occurrence of x in data
    l1 = _find_lteq(data, x)
    # Find the position of rightmost occurrence of x in data[l1...len(data)]
    # Assuming always l1 <= l2
    l2 = _find_rteq(data, l1, x)
    cf = l1
    f = l2 - l1 + 1
    return L + interval*(n/2 - cf)/f


def mode(data):
    """Return the most common data point from discrete or nominal data.

    ``mode`` assumes discrete data, and returns a single value. This is the
    standard treatment of the mode as commonly taught in schools:

    >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
    3

    This also works with nominal (non-numeric) data:

    >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
    'red'

    If there is not exactly one most common value, ``mode`` will raise
    StatisticsError.
    """
    # Generate a table of sorted (value, frequency) pairs.
    table = _counts(data)
    if len(table) == 1:
        return table[0][0]
    elif table:
        raise StatisticsError(
                'no unique mode; found %d equally common values' % len(table)
                )
    else:
        raise StatisticsError('no mode for empty data')


# === Measures of spread ===

# See http://mathworld.wolfram.com/Variance.html
#     http://mathworld.wolfram.com/SampleVariance.html
#     http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
#
# Under no circumstances use the so-called "computational formula for
# variance", as that is only suitable for hand calculations with a small
# amount of low-precision data. It has terrible numeric properties.
#
# See a comparison of three computational methods here:
# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/

def _ss(data, c=None):
    """Return sum of square deviations of sequence data.

    If ``c`` is None, the mean is calculated in one pass, and the deviations
    from the mean are calculated in a second pass. Otherwise, deviations are
    calculated from ``c`` as given. Use the second case with care, as it can
    lead to garbage results.
    """
    if c is None:
        c = mean(data)
    T, total, count = _sum((x-c)**2 for x in data)
    # The following sum should mathematically equal zero, but due to rounding
    # error may not.
    U, total2, count2 = _sum((x-c) for x in data)
    assert T == U and count == count2
    total -=  total2**2/len(data)
    assert not total < 0, 'negative sum of square deviations: %f' % total
    return (T, total)


def variance(data, xbar=None):
    """Return the sample variance of data.

    data should be an iterable of Real-valued numbers, with at least two
    values. The optional argument xbar, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function when your data is a sample from a population. To
    calculate the variance from the entire population, see ``pvariance``.

    Examples:

    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
    >>> variance(data)
    1.3720238095238095

    If you have already calculated the mean of your data, you can pass it as
    the optional second argument ``xbar`` to avoid recalculating it:

    >>> m = mean(data)
    >>> variance(data, m)
    1.3720238095238095

    This function does not check that ``xbar`` is actually the mean of
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
    impossible results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('31.01875')

    >>> from fractions import Fraction as F
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
    Fraction(67, 108)

    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 2:
        raise StatisticsError('variance requires at least two data points')
    T, ss = _ss(data, xbar)
    return _convert(ss/(n-1), T)


def pvariance(data, mu=None):
    """Return the population variance of ``data``.

    data should be an iterable of Real-valued numbers, with at least one
    value. The optional argument mu, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function to calculate the variance from the entire population.
    To estimate the variance from a sample, the ``variance`` function is
    usually a better choice.

    Examples:

    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
    >>> pvariance(data)
    1.25

    If you have already calculated the mean of the data, you can pass it as
    the optional second argument to avoid recalculating it:

    >>> mu = mean(data)
    >>> pvariance(data, mu)
    1.25

    This function does not check that ``mu`` is actually the mean of ``data``.
    Giving arbitrary values for ``mu`` may lead to invalid or impossible
    results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('24.815')

    >>> from fractions import Fraction as F
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
    Fraction(13, 72)

    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 1:
        raise StatisticsError('pvariance requires at least one data point')
    T, ss = _ss(data, mu)
    return _convert(ss/n, T)


def stdev(data, xbar=None):
    """Return the square root of the sample variance.

    See ``variance`` for arguments and other details.

    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    1.0810874155219827

    """
    var = variance(data, xbar)
    try:
        return var.sqrt()
    except AttributeError:
        return math.sqrt(var)


def pstdev(data, mu=None):
    """Return the square root of the population variance.

    See ``pvariance`` for arguments and other details.

    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    0.986893273527251

    """
    var = pvariance(data, mu)
    try:
        return var.sqrt()
    except AttributeError:
        return math.sqrt(var)

Filemanager

Name Type Size Permission Actions
__pycache__ Folder 0755
asyncio Folder 0755
collections Folder 0755
concurrent Folder 0755
config-3.6m-x86_64-linux-gnu Folder 0755
ctypes Folder 0755
curses Folder 0755
dbm Folder 0755
distutils Folder 0755
email Folder 0755
encodings Folder 0755
ensurepip Folder 0755
html Folder 0755
http Folder 0755
importlib Folder 0755
json Folder 0755
lib-dynload Folder 0755
lib2to3 Folder 0755
logging Folder 0755
multiprocessing Folder 0755
pydoc_data Folder 0755
site-packages Folder 0755
sqlite3 Folder 0755
test Folder 0755
unittest Folder 0755
urllib Folder 0755
venv Folder 0755
wsgiref Folder 0755
xml Folder 0755
xmlrpc Folder 0755
__future__.py File 4.73 KB 0644
__phello__.foo.py File 64 B 0644
_bootlocale.py File 1.27 KB 0644
_collections_abc.py File 25.77 KB 0644
_compat_pickle.py File 8.54 KB 0644
_compression.py File 5.21 KB 0644
_dummy_thread.py File 5 KB 0644
_markupbase.py File 14.26 KB 0644
_osx_support.py File 18.69 KB 0644
_pydecimal.py File 224.83 KB 0644
_pyio.py File 86.03 KB 0644
_sitebuiltins.py File 3.04 KB 0644
_strptime.py File 24.17 KB 0644
_sysconfigdata_dm_linux_x86_64-linux-gnu.py File 29.48 KB 0644
_sysconfigdata_m_linux_x86_64-linux-gnu.py File 29.66 KB 0644
_threading_local.py File 7.04 KB 0644
_weakrefset.py File 5.57 KB 0644
abc.py File 8.52 KB 0644
aifc.py File 31.69 KB 0644
antigravity.py File 477 B 0644
argparse.py File 88.25 KB 0644
ast.py File 11.88 KB 0644
asynchat.py File 11.06 KB 0644
asyncore.py File 19.69 KB 0644
base64.py File 19.91 KB 0755
bdb.py File 23 KB 0644
binhex.py File 13.63 KB 0644
bisect.py File 2.53 KB 0644
bz2.py File 12.19 KB 0644
cProfile.py File 5.25 KB 0755
calendar.py File 22.67 KB 0644
cgi.py File 36.35 KB 0755
cgitb.py File 11.74 KB 0644
chunk.py File 5.3 KB 0644
cmd.py File 14.51 KB 0644
code.py File 10.37 KB 0644
codecs.py File 35.43 KB 0644
codeop.py File 5.85 KB 0644
colorsys.py File 3.97 KB 0644
compileall.py File 11.84 KB 0644
configparser.py File 52.34 KB 0644
contextlib.py File 12.85 KB 0644
copy.py File 8.61 KB 0644
copyreg.py File 6.84 KB 0644
crypt.py File 1.82 KB 0644
csv.py File 15.8 KB 0644
datetime.py File 80.11 KB 0644
decimal.py File 320 B 0644
difflib.py File 82.4 KB 0644
dis.py File 17.71 KB 0644
doctest.py File 101.94 KB 0644
dummy_threading.py File 2.75 KB 0644
enum.py File 32.82 KB 0644
filecmp.py File 9.6 KB 0644
fileinput.py File 14.13 KB 0644
fnmatch.py File 3.09 KB 0644
formatter.py File 14.79 KB 0644
fractions.py File 23.08 KB 0644
ftplib.py File 34.78 KB 0644
functools.py File 30.61 KB 0644
genericpath.py File 4.64 KB 0644
getopt.py File 7.31 KB 0644
getpass.py File 5.85 KB 0644
gettext.py File 21.03 KB 0644
glob.py File 5.51 KB 0644
gzip.py File 19.86 KB 0644
hashlib.py File 8.59 KB 0644
heapq.py File 22.39 KB 0644
hmac.py File 6.23 KB 0644
imaplib.py File 52.05 KB 0644
imghdr.py File 3.71 KB 0644
imp.py File 10.42 KB 0644
inspect.py File 114.22 KB 0644
io.py File 3.43 KB 0644
ipaddress.py File 75.99 KB 0644
keyword.py File 2.17 KB 0755
linecache.py File 5.19 KB 0644
locale.py File 75.49 KB 0644
lzma.py File 12.68 KB 0644
macpath.py File 5.83 KB 0644
macurl2path.py File 2.67 KB 0644
mailbox.py File 76.78 KB 0644
mailcap.py File 8.85 KB 0644
mimetypes.py File 20.55 KB 0644
modulefinder.py File 22.49 KB 0644
netrc.py File 5.55 KB 0644
nntplib.py File 42.07 KB 0644
ntpath.py File 22.55 KB 0644
nturl2path.py File 2.39 KB 0644
numbers.py File 10 KB 0644
opcode.py File 5.69 KB 0644
operator.py File 10.61 KB 0644
optparse.py File 58.96 KB 0644
os.py File 36.65 KB 0644
pathlib.py File 47.83 KB 0644
pdb.py File 59.88 KB 0755
pickle.py File 54.39 KB 0644
pickletools.py File 89.62 KB 0644
pipes.py File 8.71 KB 0644
pkgutil.py File 20.82 KB 0644
platform.py File 46.11 KB 0755
plistlib.py File 31.53 KB 0644
poplib.py File 14.61 KB 0644
posixpath.py File 15.4 KB 0644
pprint.py File 20.37 KB 0644
profile.py File 21.51 KB 0755
pstats.py File 25.94 KB 0644
pty.py File 4.65 KB 0644
py_compile.py File 7.01 KB 0644
pyclbr.py File 13.24 KB 0644
pydoc.py File 101.08 KB 0644
queue.py File 8.57 KB 0644
quopri.py File 7.09 KB 0755
random.py File 26.8 KB 0644
re.py File 15.19 KB 0644
reprlib.py File 5.21 KB 0644
rlcompleter.py File 6.93 KB 0644
runpy.py File 11.68 KB 0644
sched.py File 6.36 KB 0644
secrets.py File 1.99 KB 0644
selectors.py File 18.98 KB 0644
shelve.py File 8.32 KB 0644
shlex.py File 12.65 KB 0644
shutil.py File 39.87 KB 0644
signal.py File 2.07 KB 0644
site.py File 20.77 KB 0644
smtpd.py File 33.91 KB 0755
smtplib.py File 43.18 KB 0755
sndhdr.py File 6.92 KB 0644
socket.py File 26.8 KB 0644
socketserver.py File 26.38 KB 0644
sre_compile.py File 18.88 KB 0644
sre_constants.py File 6.66 KB 0644
sre_parse.py File 35.68 KB 0644
ssl.py File 43.47 KB 0644
stat.py File 4.92 KB 0644
statistics.py File 20.19 KB 0644
string.py File 11.52 KB 0644
stringprep.py File 12.61 KB 0644
struct.py File 257 B 0644
subprocess.py File 60.88 KB 0644
sunau.py File 17.67 KB 0644
symbol.py File 2.07 KB 0755
symtable.py File 7.11 KB 0644
sysconfig.py File 24.29 KB 0644
tabnanny.py File 11.14 KB 0755
tarfile.py File 104.88 KB 0755
telnetlib.py File 22.59 KB 0644
tempfile.py File 27.41 KB 0644
textwrap.py File 19.1 KB 0644
this.py File 1003 B 0644
threading.py File 48.96 KB 0644
timeit.py File 13.03 KB 0755
token.py File 3 KB 0644
tokenize.py File 28.8 KB 0644
trace.py File 28.06 KB 0755
traceback.py File 22.91 KB 0644
tracemalloc.py File 16.27 KB 0644
tty.py File 879 B 0644
types.py File 8.66 KB 0644
typing.py File 78.39 KB 0644
uu.py File 6.6 KB 0755
uuid.py File 23.46 KB 0644
warnings.py File 18.05 KB 0644
wave.py File 17.29 KB 0644
weakref.py File 19.99 KB 0644
webbrowser.py File 21.26 KB 0755
xdrlib.py File 5.77 KB 0644
zipapp.py File 6.99 KB 0644
zipfile.py File 78.05 KB 0644