404

[ Avaa Bypassed ]




Upload:

Command:

elspacio@3.144.37.240: ~ $
"""
This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
our sphinx ``conf.py`` during doc builds, where we want to avoid showing
platform-dependent information.
"""
import sys
import os
from numpy.core import dtype
from numpy.core import numerictypes as _numerictypes
from numpy.core.function_base import add_newdoc

##############################################################################
#
# Documentation for concrete scalar classes
#
##############################################################################

def numeric_type_aliases(aliases):
    def type_aliases_gen():
        for alias, doc in aliases:
            try:
                alias_type = getattr(_numerictypes, alias)
            except AttributeError:
                # The set of aliases that actually exist varies between platforms
                pass
            else:
                yield (alias_type, alias, doc)
    return list(type_aliases_gen())


possible_aliases = numeric_type_aliases([
    ('int8', '8-bit signed integer (``-128`` to ``127``)'),
    ('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
    ('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
    ('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
    ('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
    ('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
    ('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
    ('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
    ('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
    ('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
    ('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
    ('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
    ('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
    ('float96', '96-bit extended-precision floating-point number type'),
    ('float128', '128-bit extended-precision floating-point number type'),
    ('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
    ('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
    ('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
    ('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
    ])


def _get_platform_and_machine():
    try:
        system, _, _, _, machine = os.uname()
    except AttributeError:
        system = sys.platform
        if system == 'win32':
            machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \
                    or os.environ.get('PROCESSOR_ARCHITECTURE', '')
        else:
            machine = 'unknown'
    return system, machine


_system, _machine = _get_platform_and_machine()
_doc_alias_string = f":Alias on this platform ({_system} {_machine}):"


def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
    # note: `:field: value` is rST syntax which renders as field lists.
    o = getattr(_numerictypes, obj)

    character_code = dtype(o).char
    canonical_name_doc = "" if obj == o.__name__ else \
                        f":Canonical name: `numpy.{obj}`\n    "
    if fixed_aliases:
        alias_doc = ''.join(f":Alias: `numpy.{alias}`\n    "
                            for alias in fixed_aliases)
    else:
        alias_doc = ''
    alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n    "
                         for (alias_type, alias, doc) in possible_aliases if alias_type is o)

    docstring = f"""
    {doc.strip()}

    :Character code: ``'{character_code}'``
    {canonical_name_doc}{alias_doc}
    """

    add_newdoc('numpy.core.numerictypes', obj, docstring)


add_newdoc_for_scalar_type('bool_', [],
    """
    Boolean type (True or False), stored as a byte.

    .. warning::

       The :class:`bool_` type is not a subclass of the :class:`int_` type
       (the :class:`bool_` is not even a number type). This is different
       than Python's default implementation of :class:`bool` as a
       sub-class of :class:`int`.
    """)

add_newdoc_for_scalar_type('byte', [],
    """
    Signed integer type, compatible with C ``char``.
    """)

add_newdoc_for_scalar_type('short', [],
    """
    Signed integer type, compatible with C ``short``.
    """)

add_newdoc_for_scalar_type('intc', [],
    """
    Signed integer type, compatible with C ``int``.
    """)

add_newdoc_for_scalar_type('int_', [],
    """
    Signed integer type, compatible with Python `int` and C ``long``.
    """)

add_newdoc_for_scalar_type('longlong', [],
    """
    Signed integer type, compatible with C ``long long``.
    """)

add_newdoc_for_scalar_type('ubyte', [],
    """
    Unsigned integer type, compatible with C ``unsigned char``.
    """)

add_newdoc_for_scalar_type('ushort', [],
    """
    Unsigned integer type, compatible with C ``unsigned short``.
    """)

add_newdoc_for_scalar_type('uintc', [],
    """
    Unsigned integer type, compatible with C ``unsigned int``.
    """)

add_newdoc_for_scalar_type('uint', [],
    """
    Unsigned integer type, compatible with C ``unsigned long``.
    """)

add_newdoc_for_scalar_type('ulonglong', [],
    """
    Signed integer type, compatible with C ``unsigned long long``.
    """)

add_newdoc_for_scalar_type('half', [],
    """
    Half-precision floating-point number type.
    """)

add_newdoc_for_scalar_type('single', [],
    """
    Single-precision floating-point number type, compatible with C ``float``.
    """)

add_newdoc_for_scalar_type('double', ['float_'],
    """
    Double-precision floating-point number type, compatible with Python `float`
    and C ``double``.
    """)

add_newdoc_for_scalar_type('longdouble', ['longfloat'],
    """
    Extended-precision floating-point number type, compatible with C
    ``long double`` but not necessarily with IEEE 754 quadruple-precision.
    """)

add_newdoc_for_scalar_type('csingle', ['singlecomplex'],
    """
    Complex number type composed of two single-precision floating-point
    numbers.
    """)

add_newdoc_for_scalar_type('cdouble', ['cfloat', 'complex_'],
    """
    Complex number type composed of two double-precision floating-point
    numbers, compatible with Python `complex`.
    """)

add_newdoc_for_scalar_type('clongdouble', ['clongfloat', 'longcomplex'],
    """
    Complex number type composed of two extended-precision floating-point
    numbers.
    """)

add_newdoc_for_scalar_type('object_', [],
    """
    Any Python object.
    """)

add_newdoc_for_scalar_type('str_', ['unicode_'],
    r"""
    A unicode string.

    This type strips trailing null codepoints.

    >>> s = np.str_("abc\x00")
    >>> s
    'abc'

    Unlike the builtin `str`, this supports the :ref:`python:bufferobjects`, exposing its
    contents as UCS4:

    >>> m = memoryview(np.str_("abc"))
    >>> m.format
    '3w'
    >>> m.tobytes()
    b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
    """)

add_newdoc_for_scalar_type('bytes_', ['string_'],
    r"""
    A byte string.

    When used in arrays, this type strips trailing null bytes.
    """)

add_newdoc_for_scalar_type('void', [],
    r"""
    np.void(length_or_data, /, dtype=None)

    Create a new structured or unstructured void scalar.

    Parameters
    ----------
    length_or_data : int, array-like, bytes-like, object
       One of multiple meanings (see notes).  The length or
       bytes data of an unstructured void.  Or alternatively,
       the data to be stored in the new scalar when `dtype`
       is provided.
       This can be an array-like, in which case an array may
       be returned.
    dtype : dtype, optional
        If provided the dtype of the new scalar.  This dtype must
        be "void" dtype (i.e. a structured or unstructured void,
        see also :ref:`defining-structured-types`).

       ..versionadded:: 1.24

    Notes
    -----
    For historical reasons and because void scalars can represent both
    arbitrary byte data and structured dtypes, the void constructor
    has three calling conventions:

    1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five
       ``\0`` bytes.  The 5 can be a Python or NumPy integer.
    2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string.
       The dtype itemsize will match the byte string length, here ``"V10"``.
    3. When a ``dtype=`` is passed the call is roughly the same as an
       array creation.  However, a void scalar rather than array is returned.

    Please see the examples which show all three different conventions.

    Examples
    --------
    >>> np.void(5)
    void(b'\x00\x00\x00\x00\x00')
    >>> np.void(b'abcd')
    void(b'\x61\x62\x63\x64')
    >>> np.void((5, 3.2, "eggs"), dtype="i,d,S5")
    (5, 3.2, b'eggs')  # looks like a tuple, but is `np.void`
    >>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)])
    (3, 3)  # looks like a tuple, but is `np.void`

    """)

add_newdoc_for_scalar_type('datetime64', [],
    """
    If created from a 64-bit integer, it represents an offset from
    ``1970-01-01T00:00:00``.
    If created from string, the string can be in ISO 8601 date
    or datetime format.

    >>> np.datetime64(10, 'Y')
    numpy.datetime64('1980')
    >>> np.datetime64('1980', 'Y')
    numpy.datetime64('1980')
    >>> np.datetime64(10, 'D')
    numpy.datetime64('1970-01-11')

    See :ref:`arrays.datetime` for more information.
    """)

add_newdoc_for_scalar_type('timedelta64', [],
    """
    A timedelta stored as a 64-bit integer.

    See :ref:`arrays.datetime` for more information.
    """)

add_newdoc('numpy.core.numerictypes', "integer", ('is_integer',
    """
    integer.is_integer() -> bool

    Return ``True`` if the number is finite with integral value.

    .. versionadded:: 1.22

    Examples
    --------
    >>> np.int64(-2).is_integer()
    True
    >>> np.uint32(5).is_integer()
    True
    """))

# TODO: work out how to put this on the base class, np.floating
for float_name in ('half', 'single', 'double', 'longdouble'):
    add_newdoc('numpy.core.numerictypes', float_name, ('as_integer_ratio',
        """
        {ftype}.as_integer_ratio() -> (int, int)

        Return a pair of integers, whose ratio is exactly equal to the original
        floating point number, and with a positive denominator.
        Raise `OverflowError` on infinities and a `ValueError` on NaNs.

        >>> np.{ftype}(10.0).as_integer_ratio()
        (10, 1)
        >>> np.{ftype}(0.0).as_integer_ratio()
        (0, 1)
        >>> np.{ftype}(-.25).as_integer_ratio()
        (-1, 4)
        """.format(ftype=float_name)))

    add_newdoc('numpy.core.numerictypes', float_name, ('is_integer',
        f"""
        {float_name}.is_integer() -> bool

        Return ``True`` if the floating point number is finite with integral
        value, and ``False`` otherwise.

        .. versionadded:: 1.22

        Examples
        --------
        >>> np.{float_name}(-2.0).is_integer()
        True
        >>> np.{float_name}(3.2).is_integer()
        False
        """))

for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
        'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'):
    # Add negative examples for signed cases by checking typecode
    add_newdoc('numpy.core.numerictypes', int_name, ('bit_count',
        f"""
        {int_name}.bit_count() -> int

        Computes the number of 1-bits in the absolute value of the input.
        Analogous to the builtin `int.bit_count` or ``popcount`` in C++.

        Examples
        --------
        >>> np.{int_name}(127).bit_count()
        7""" +
        (f"""
        >>> np.{int_name}(-127).bit_count()
        7
        """ if dtype(int_name).char.islower() else "")))

Filemanager

Name Type Size Permission Actions
__pycache__ Folder 0755
include Folder 0755
lib Folder 0755
tests Folder 0755
__init__.py File 5.64 KB 0644
__init__.pyi File 126 B 0644
_add_newdocs.py File 204.07 KB 0644
_add_newdocs_scalars.py File 11.82 KB 0644
_asarray.py File 3.79 KB 0644
_asarray.pyi File 1.06 KB 0644
_dtype.py File 10.36 KB 0644
_dtype_ctypes.py File 3.59 KB 0644
_exceptions.py File 5.25 KB 0644
_internal.py File 27.68 KB 0644
_internal.pyi File 1.01 KB 0644
_machar.py File 11.29 KB 0644
_methods.py File 8.41 KB 0644
_multiarray_tests.cpython-311-x86_64-linux-gnu.so File 171.4 KB 0755
_multiarray_umath.cpython-311-x86_64-linux-gnu.so File 6.64 MB 0755
_operand_flag_tests.cpython-311-x86_64-linux-gnu.so File 16.55 KB 0755
_rational_tests.cpython-311-x86_64-linux-gnu.so File 58.29 KB 0755
_simd.cpython-311-x86_64-linux-gnu.so File 2.47 MB 0755
_string_helpers.py File 2.79 KB 0644
_struct_ufunc_tests.cpython-311-x86_64-linux-gnu.so File 16.65 KB 0755
_type_aliases.py File 7.36 KB 0644
_type_aliases.pyi File 404 B 0644
_ufunc_config.py File 13.62 KB 0644
_ufunc_config.pyi File 1.04 KB 0644
_umath_tests.cpython-311-x86_64-linux-gnu.so File 41.01 KB 0755
arrayprint.py File 62.12 KB 0644
arrayprint.pyi File 4.32 KB 0644
cversions.py File 347 B 0644
defchararray.py File 71.89 KB 0644
defchararray.pyi File 9 KB 0644
einsumfunc.py File 50.65 KB 0644
einsumfunc.pyi File 4.75 KB 0644
fromnumeric.py File 125.8 KB 0644
fromnumeric.pyi File 22.96 KB 0644
function_base.py File 19.37 KB 0644
function_base.pyi File 4.61 KB 0644
generate_numpy_api.py File 7.47 KB 0644
getlimits.py File 25.26 KB 0644
getlimits.pyi File 82 B 0644
memmap.py File 11.5 KB 0644
memmap.pyi File 55 B 0644
multiarray.py File 54.78 KB 0644
multiarray.pyi File 24.19 KB 0644
numeric.py File 75.21 KB 0644
numeric.pyi File 13.9 KB 0644
numerictypes.py File 17.67 KB 0644
numerictypes.pyi File 3.19 KB 0644
overrides.py File 6.93 KB 0644
records.py File 36.65 KB 0644
records.pyi File 5.56 KB 0644
setup.py File 47.05 KB 0644
setup_common.py File 16.68 KB 0644
shape_base.py File 29.05 KB 0644
shape_base.pyi File 2.71 KB 0644
umath.py File 1.99 KB 0644
umath_tests.py File 389 B 0644