from __future__ import annotations
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
if TYPE_CHECKING:
from ._typing import (
Array,
Device,
Dtype,
NestedSequence,
SupportsBufferProtocol,
)
from collections.abc import Sequence
from ._dtypes import _all_dtypes
import numpy as np
def _check_valid_dtype(dtype):
# Note: Only spelling dtypes as the dtype objects is supported.
# We use this instead of "dtype in _all_dtypes" because the dtype objects
# define equality with the sorts of things we want to disallow.
for d in (None,) + _all_dtypes:
if dtype is d:
return
raise ValueError("dtype must be one of the supported dtypes")
def asarray(
obj: Union[
Array,
bool,
int,
float,
NestedSequence[bool | int | float],
SupportsBufferProtocol,
],
/,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
copy: Optional[Union[bool, np._CopyMode]] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.asarray <numpy.asarray>`.
See its docstring for more information.
"""
# _array_object imports in this file are inside the functions to avoid
# circular imports
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
if copy in (False, np._CopyMode.IF_NEEDED):
# Note: copy=False is not yet implemented in np.asarray
raise NotImplementedError("copy=False is not yet implemented")
if isinstance(obj, Array):
if dtype is not None and obj.dtype != dtype:
copy = True
if copy in (True, np._CopyMode.ALWAYS):
return Array._new(np.array(obj._array, copy=True, dtype=dtype))
return obj
if dtype is None and isinstance(obj, int) and (obj > 2 ** 64 or obj < -(2 ** 63)):
# Give a better error message in this case. NumPy would convert this
# to an object array. TODO: This won't handle large integers in lists.
raise OverflowError("Integer out of bounds for array dtypes")
res = np.asarray(obj, dtype=dtype)
return Array._new(res)
def arange(
start: Union[int, float],
/,
stop: Optional[Union[int, float]] = None,
step: Union[int, float] = 1,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arange <numpy.arange>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.arange(start, stop=stop, step=step, dtype=dtype))
def empty(
shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.empty <numpy.empty>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.empty(shape, dtype=dtype))
def empty_like(
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.empty_like <numpy.empty_like>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.empty_like(x._array, dtype=dtype))
def eye(
n_rows: int,
n_cols: Optional[int] = None,
/,
*,
k: int = 0,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.eye <numpy.eye>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype))
def from_dlpack(x: object, /) -> Array:
from ._array_object import Array
return Array._new(np.from_dlpack(x))
def full(
shape: Union[int, Tuple[int, ...]],
fill_value: Union[int, float],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.full <numpy.full>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
if isinstance(fill_value, Array) and fill_value.ndim == 0:
fill_value = fill_value._array
res = np.full(shape, fill_value, dtype=dtype)
if res.dtype not in _all_dtypes:
# This will happen if the fill value is not something that NumPy
# coerces to one of the acceptable dtypes.
raise TypeError("Invalid input to full")
return Array._new(res)
def full_like(
x: Array,
/,
fill_value: Union[int, float],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.full_like <numpy.full_like>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
res = np.full_like(x._array, fill_value, dtype=dtype)
if res.dtype not in _all_dtypes:
# This will happen if the fill value is not something that NumPy
# coerces to one of the acceptable dtypes.
raise TypeError("Invalid input to full_like")
return Array._new(res)
def linspace(
start: Union[int, float],
stop: Union[int, float],
/,
num: int,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
endpoint: bool = True,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.linspace <numpy.linspace>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint))
def meshgrid(*arrays: Array, indexing: str = "xy") -> List[Array]:
"""
Array API compatible wrapper for :py:func:`np.meshgrid <numpy.meshgrid>`.
See its docstring for more information.
"""
from ._array_object import Array
# Note: unlike np.meshgrid, only inputs with all the same dtype are
# allowed
if len({a.dtype for a in arrays}) > 1:
raise ValueError("meshgrid inputs must all have the same dtype")
return [
Array._new(array)
for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing)
]
def ones(
shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.ones <numpy.ones>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.ones(shape, dtype=dtype))
def ones_like(
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.ones_like <numpy.ones_like>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.ones_like(x._array, dtype=dtype))
def tril(x: Array, /, *, k: int = 0) -> Array:
"""
Array API compatible wrapper for :py:func:`np.tril <numpy.tril>`.
See its docstring for more information.
"""
from ._array_object import Array
if x.ndim < 2:
# Note: Unlike np.tril, x must be at least 2-D
raise ValueError("x must be at least 2-dimensional for tril")
return Array._new(np.tril(x._array, k=k))
def triu(x: Array, /, *, k: int = 0) -> Array:
"""
Array API compatible wrapper for :py:func:`np.triu <numpy.triu>`.
See its docstring for more information.
"""
from ._array_object import Array
if x.ndim < 2:
# Note: Unlike np.triu, x must be at least 2-D
raise ValueError("x must be at least 2-dimensional for triu")
return Array._new(np.triu(x._array, k=k))
def zeros(
shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.zeros <numpy.zeros>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.zeros(shape, dtype=dtype))
def zeros_like(
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.zeros_like <numpy.zeros_like>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.zeros_like(x._array, dtype=dtype))