404

[ Avaa Bypassed ]




Upload:

Command:

elspacio@18.227.140.235: ~ $
#! /opt/alt/python39/bin/python3.9
#
# Class for profiling python code. rev 1.0  6/2/94
#
# Written by James Roskind
# Based on prior profile module by Sjoerd Mullender...
#   which was hacked somewhat by: Guido van Rossum

"""Class for profiling Python code."""

# Copyright Disney Enterprises, Inc.  All Rights Reserved.
# Licensed to PSF under a Contributor Agreement
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
# either express or implied.  See the License for the specific language
# governing permissions and limitations under the License.


import io
import sys
import time
import marshal

__all__ = ["run", "runctx", "Profile"]

# Sample timer for use with
#i_count = 0
#def integer_timer():
#       global i_count
#       i_count = i_count + 1
#       return i_count
#itimes = integer_timer # replace with C coded timer returning integers

class _Utils:
    """Support class for utility functions which are shared by
    profile.py and cProfile.py modules.
    Not supposed to be used directly.
    """

    def __init__(self, profiler):
        self.profiler = profiler

    def run(self, statement, filename, sort):
        prof = self.profiler()
        try:
            prof.run(statement)
        except SystemExit:
            pass
        finally:
            self._show(prof, filename, sort)

    def runctx(self, statement, globals, locals, filename, sort):
        prof = self.profiler()
        try:
            prof.runctx(statement, globals, locals)
        except SystemExit:
            pass
        finally:
            self._show(prof, filename, sort)

    def _show(self, prof, filename, sort):
        if filename is not None:
            prof.dump_stats(filename)
        else:
            prof.print_stats(sort)


#**************************************************************************
# The following are the static member functions for the profiler class
# Note that an instance of Profile() is *not* needed to call them.
#**************************************************************************

def run(statement, filename=None, sort=-1):
    """Run statement under profiler optionally saving results in filename

    This function takes a single argument that can be passed to the
    "exec" statement, and an optional file name.  In all cases this
    routine attempts to "exec" its first argument and gather profiling
    statistics from the execution. If no file name is present, then this
    function automatically prints a simple profiling report, sorted by the
    standard name string (file/line/function-name) that is presented in
    each line.
    """
    return _Utils(Profile).run(statement, filename, sort)

def runctx(statement, globals, locals, filename=None, sort=-1):
    """Run statement under profiler, supplying your own globals and locals,
    optionally saving results in filename.

    statement and filename have the same semantics as profile.run
    """
    return _Utils(Profile).runctx(statement, globals, locals, filename, sort)


class Profile:
    """Profiler class.

    self.cur is always a tuple.  Each such tuple corresponds to a stack
    frame that is currently active (self.cur[-2]).  The following are the
    definitions of its members.  We use this external "parallel stack" to
    avoid contaminating the program that we are profiling. (old profiler
    used to write into the frames local dictionary!!) Derived classes
    can change the definition of some entries, as long as they leave
    [-2:] intact (frame and previous tuple).  In case an internal error is
    detected, the -3 element is used as the function name.

    [ 0] = Time that needs to be charged to the parent frame's function.
           It is used so that a function call will not have to access the
           timing data for the parent frame.
    [ 1] = Total time spent in this frame's function, excluding time in
           subfunctions (this latter is tallied in cur[2]).
    [ 2] = Total time spent in subfunctions, excluding time executing the
           frame's function (this latter is tallied in cur[1]).
    [-3] = Name of the function that corresponds to this frame.
    [-2] = Actual frame that we correspond to (used to sync exception handling).
    [-1] = Our parent 6-tuple (corresponds to frame.f_back).

    Timing data for each function is stored as a 5-tuple in the dictionary
    self.timings[].  The index is always the name stored in self.cur[-3].
    The following are the definitions of the members:

    [0] = The number of times this function was called, not counting direct
          or indirect recursion,
    [1] = Number of times this function appears on the stack, minus one
    [2] = Total time spent internal to this function
    [3] = Cumulative time that this function was present on the stack.  In
          non-recursive functions, this is the total execution time from start
          to finish of each invocation of a function, including time spent in
          all subfunctions.
    [4] = A dictionary indicating for each function name, the number of times
          it was called by us.
    """

    bias = 0  # calibration constant

    def __init__(self, timer=None, bias=None):
        self.timings = {}
        self.cur = None
        self.cmd = ""
        self.c_func_name = ""

        if bias is None:
            bias = self.bias
        self.bias = bias     # Materialize in local dict for lookup speed.

        if not timer:
            self.timer = self.get_time = time.process_time
            self.dispatcher = self.trace_dispatch_i
        else:
            self.timer = timer
            t = self.timer() # test out timer function
            try:
                length = len(t)
            except TypeError:
                self.get_time = timer
                self.dispatcher = self.trace_dispatch_i
            else:
                if length == 2:
                    self.dispatcher = self.trace_dispatch
                else:
                    self.dispatcher = self.trace_dispatch_l
                # This get_time() implementation needs to be defined
                # here to capture the passed-in timer in the parameter
                # list (for performance).  Note that we can't assume
                # the timer() result contains two values in all
                # cases.
                def get_time_timer(timer=timer, sum=sum):
                    return sum(timer())
                self.get_time = get_time_timer
        self.t = self.get_time()
        self.simulate_call('profiler')

    # Heavily optimized dispatch routine for time.process_time() timer

    def trace_dispatch(self, frame, event, arg):
        timer = self.timer
        t = timer()
        t = t[0] + t[1] - self.t - self.bias

        if event == "c_call":
            self.c_func_name = arg.__name__

        if self.dispatch[event](self, frame,t):
            t = timer()
            self.t = t[0] + t[1]
        else:
            r = timer()
            self.t = r[0] + r[1] - t # put back unrecorded delta

    # Dispatch routine for best timer program (return = scalar, fastest if
    # an integer but float works too -- and time.process_time() relies on that).

    def trace_dispatch_i(self, frame, event, arg):
        timer = self.timer
        t = timer() - self.t - self.bias

        if event == "c_call":
            self.c_func_name = arg.__name__

        if self.dispatch[event](self, frame, t):
            self.t = timer()
        else:
            self.t = timer() - t  # put back unrecorded delta

    # Dispatch routine for macintosh (timer returns time in ticks of
    # 1/60th second)

    def trace_dispatch_mac(self, frame, event, arg):
        timer = self.timer
        t = timer()/60.0 - self.t - self.bias

        if event == "c_call":
            self.c_func_name = arg.__name__

        if self.dispatch[event](self, frame, t):
            self.t = timer()/60.0
        else:
            self.t = timer()/60.0 - t  # put back unrecorded delta

    # SLOW generic dispatch routine for timer returning lists of numbers

    def trace_dispatch_l(self, frame, event, arg):
        get_time = self.get_time
        t = get_time() - self.t - self.bias

        if event == "c_call":
            self.c_func_name = arg.__name__

        if self.dispatch[event](self, frame, t):
            self.t = get_time()
        else:
            self.t = get_time() - t # put back unrecorded delta

    # In the event handlers, the first 3 elements of self.cur are unpacked
    # into vrbls w/ 3-letter names.  The last two characters are meant to be
    # mnemonic:
    #     _pt  self.cur[0] "parent time"   time to be charged to parent frame
    #     _it  self.cur[1] "internal time" time spent directly in the function
    #     _et  self.cur[2] "external time" time spent in subfunctions

    def trace_dispatch_exception(self, frame, t):
        rpt, rit, ret, rfn, rframe, rcur = self.cur
        if (rframe is not frame) and rcur:
            return self.trace_dispatch_return(rframe, t)
        self.cur = rpt, rit+t, ret, rfn, rframe, rcur
        return 1


    def trace_dispatch_call(self, frame, t):
        if self.cur and frame.f_back is not self.cur[-2]:
            rpt, rit, ret, rfn, rframe, rcur = self.cur
            if not isinstance(rframe, Profile.fake_frame):
                assert rframe.f_back is frame.f_back, ("Bad call", rfn,
                                                       rframe, rframe.f_back,
                                                       frame, frame.f_back)
                self.trace_dispatch_return(rframe, 0)
                assert (self.cur is None or \
                        frame.f_back is self.cur[-2]), ("Bad call",
                                                        self.cur[-3])
        fcode = frame.f_code
        fn = (fcode.co_filename, fcode.co_firstlineno, fcode.co_name)
        self.cur = (t, 0, 0, fn, frame, self.cur)
        timings = self.timings
        if fn in timings:
            cc, ns, tt, ct, callers = timings[fn]
            timings[fn] = cc, ns + 1, tt, ct, callers
        else:
            timings[fn] = 0, 0, 0, 0, {}
        return 1

    def trace_dispatch_c_call (self, frame, t):
        fn = ("", 0, self.c_func_name)
        self.cur = (t, 0, 0, fn, frame, self.cur)
        timings = self.timings
        if fn in timings:
            cc, ns, tt, ct, callers = timings[fn]
            timings[fn] = cc, ns+1, tt, ct, callers
        else:
            timings[fn] = 0, 0, 0, 0, {}
        return 1

    def trace_dispatch_return(self, frame, t):
        if frame is not self.cur[-2]:
            assert frame is self.cur[-2].f_back, ("Bad return", self.cur[-3])
            self.trace_dispatch_return(self.cur[-2], 0)

        # Prefix "r" means part of the Returning or exiting frame.
        # Prefix "p" means part of the Previous or Parent or older frame.

        rpt, rit, ret, rfn, frame, rcur = self.cur
        rit = rit + t
        frame_total = rit + ret

        ppt, pit, pet, pfn, pframe, pcur = rcur
        self.cur = ppt, pit + rpt, pet + frame_total, pfn, pframe, pcur

        timings = self.timings
        cc, ns, tt, ct, callers = timings[rfn]
        if not ns:
            # This is the only occurrence of the function on the stack.
            # Else this is a (directly or indirectly) recursive call, and
            # its cumulative time will get updated when the topmost call to
            # it returns.
            ct = ct + frame_total
            cc = cc + 1

        if pfn in callers:
            callers[pfn] = callers[pfn] + 1  # hack: gather more
            # stats such as the amount of time added to ct courtesy
            # of this specific call, and the contribution to cc
            # courtesy of this call.
        else:
            callers[pfn] = 1

        timings[rfn] = cc, ns - 1, tt + rit, ct, callers

        return 1


    dispatch = {
        "call": trace_dispatch_call,
        "exception": trace_dispatch_exception,
        "return": trace_dispatch_return,
        "c_call": trace_dispatch_c_call,
        "c_exception": trace_dispatch_return,  # the C function returned
        "c_return": trace_dispatch_return,
        }


    # The next few functions play with self.cmd. By carefully preloading
    # our parallel stack, we can force the profiled result to include
    # an arbitrary string as the name of the calling function.
    # We use self.cmd as that string, and the resulting stats look
    # very nice :-).

    def set_cmd(self, cmd):
        if self.cur[-1]: return   # already set
        self.cmd = cmd
        self.simulate_call(cmd)

    class fake_code:
        def __init__(self, filename, line, name):
            self.co_filename = filename
            self.co_line = line
            self.co_name = name
            self.co_firstlineno = 0

        def __repr__(self):
            return repr((self.co_filename, self.co_line, self.co_name))

    class fake_frame:
        def __init__(self, code, prior):
            self.f_code = code
            self.f_back = prior

    def simulate_call(self, name):
        code = self.fake_code('profile', 0, name)
        if self.cur:
            pframe = self.cur[-2]
        else:
            pframe = None
        frame = self.fake_frame(code, pframe)
        self.dispatch['call'](self, frame, 0)

    # collect stats from pending stack, including getting final
    # timings for self.cmd frame.

    def simulate_cmd_complete(self):
        get_time = self.get_time
        t = get_time() - self.t
        while self.cur[-1]:
            # We *can* cause assertion errors here if
            # dispatch_trace_return checks for a frame match!
            self.dispatch['return'](self, self.cur[-2], t)
            t = 0
        self.t = get_time() - t


    def print_stats(self, sort=-1):
        import pstats
        pstats.Stats(self).strip_dirs().sort_stats(sort). \
                  print_stats()

    def dump_stats(self, file):
        with open(file, 'wb') as f:
            self.create_stats()
            marshal.dump(self.stats, f)

    def create_stats(self):
        self.simulate_cmd_complete()
        self.snapshot_stats()

    def snapshot_stats(self):
        self.stats = {}
        for func, (cc, ns, tt, ct, callers) in self.timings.items():
            callers = callers.copy()
            nc = 0
            for callcnt in callers.values():
                nc += callcnt
            self.stats[func] = cc, nc, tt, ct, callers


    # The following two methods can be called by clients to use
    # a profiler to profile a statement, given as a string.

    def run(self, cmd):
        import __main__
        dict = __main__.__dict__
        return self.runctx(cmd, dict, dict)

    def runctx(self, cmd, globals, locals):
        self.set_cmd(cmd)
        sys.setprofile(self.dispatcher)
        try:
            exec(cmd, globals, locals)
        finally:
            sys.setprofile(None)
        return self

    # This method is more useful to profile a single function call.
    def runcall(self, func, /, *args, **kw):
        self.set_cmd(repr(func))
        sys.setprofile(self.dispatcher)
        try:
            return func(*args, **kw)
        finally:
            sys.setprofile(None)


    #******************************************************************
    # The following calculates the overhead for using a profiler.  The
    # problem is that it takes a fair amount of time for the profiler
    # to stop the stopwatch (from the time it receives an event).
    # Similarly, there is a delay from the time that the profiler
    # re-starts the stopwatch before the user's code really gets to
    # continue.  The following code tries to measure the difference on
    # a per-event basis.
    #
    # Note that this difference is only significant if there are a lot of
    # events, and relatively little user code per event.  For example,
    # code with small functions will typically benefit from having the
    # profiler calibrated for the current platform.  This *could* be
    # done on the fly during init() time, but it is not worth the
    # effort.  Also note that if too large a value specified, then
    # execution time on some functions will actually appear as a
    # negative number.  It is *normal* for some functions (with very
    # low call counts) to have such negative stats, even if the
    # calibration figure is "correct."
    #
    # One alternative to profile-time calibration adjustments (i.e.,
    # adding in the magic little delta during each event) is to track
    # more carefully the number of events (and cumulatively, the number
    # of events during sub functions) that are seen.  If this were
    # done, then the arithmetic could be done after the fact (i.e., at
    # display time).  Currently, we track only call/return events.
    # These values can be deduced by examining the callees and callers
    # vectors for each functions.  Hence we *can* almost correct the
    # internal time figure at print time (note that we currently don't
    # track exception event processing counts).  Unfortunately, there
    # is currently no similar information for cumulative sub-function
    # time.  It would not be hard to "get all this info" at profiler
    # time.  Specifically, we would have to extend the tuples to keep
    # counts of this in each frame, and then extend the defs of timing
    # tuples to include the significant two figures. I'm a bit fearful
    # that this additional feature will slow the heavily optimized
    # event/time ratio (i.e., the profiler would run slower, fur a very
    # low "value added" feature.)
    #**************************************************************

    def calibrate(self, m, verbose=0):
        if self.__class__ is not Profile:
            raise TypeError("Subclasses must override .calibrate().")

        saved_bias = self.bias
        self.bias = 0
        try:
            return self._calibrate_inner(m, verbose)
        finally:
            self.bias = saved_bias

    def _calibrate_inner(self, m, verbose):
        get_time = self.get_time

        # Set up a test case to be run with and without profiling.  Include
        # lots of calls, because we're trying to quantify stopwatch overhead.
        # Do not raise any exceptions, though, because we want to know
        # exactly how many profile events are generated (one call event, +
        # one return event, per Python-level call).

        def f1(n):
            for i in range(n):
                x = 1

        def f(m, f1=f1):
            for i in range(m):
                f1(100)

        f(m)    # warm up the cache

        # elapsed_noprofile <- time f(m) takes without profiling.
        t0 = get_time()
        f(m)
        t1 = get_time()
        elapsed_noprofile = t1 - t0
        if verbose:
            print("elapsed time without profiling =", elapsed_noprofile)

        # elapsed_profile <- time f(m) takes with profiling.  The difference
        # is profiling overhead, only some of which the profiler subtracts
        # out on its own.
        p = Profile()
        t0 = get_time()
        p.runctx('f(m)', globals(), locals())
        t1 = get_time()
        elapsed_profile = t1 - t0
        if verbose:
            print("elapsed time with profiling =", elapsed_profile)

        # reported_time <- "CPU seconds" the profiler charged to f and f1.
        total_calls = 0.0
        reported_time = 0.0
        for (filename, line, funcname), (cc, ns, tt, ct, callers) in \
                p.timings.items():
            if funcname in ("f", "f1"):
                total_calls += cc
                reported_time += tt

        if verbose:
            print("'CPU seconds' profiler reported =", reported_time)
            print("total # calls =", total_calls)
        if total_calls != m + 1:
            raise ValueError("internal error: total calls = %d" % total_calls)

        # reported_time - elapsed_noprofile = overhead the profiler wasn't
        # able to measure.  Divide by twice the number of calls (since there
        # are two profiler events per call in this test) to get the hidden
        # overhead per event.
        mean = (reported_time - elapsed_noprofile) / 2.0 / total_calls
        if verbose:
            print("mean stopwatch overhead per profile event =", mean)
        return mean

#****************************************************************************

def main():
    import os
    from optparse import OptionParser

    usage = "profile.py [-o output_file_path] [-s sort] [-m module | scriptfile] [arg] ..."
    parser = OptionParser(usage=usage)
    parser.allow_interspersed_args = False
    parser.add_option('-o', '--outfile', dest="outfile",
        help="Save stats to <outfile>", default=None)
    parser.add_option('-m', dest="module", action="store_true",
        help="Profile a library module.", default=False)
    parser.add_option('-s', '--sort', dest="sort",
        help="Sort order when printing to stdout, based on pstats.Stats class",
        default=-1)

    if not sys.argv[1:]:
        parser.print_usage()
        sys.exit(2)

    (options, args) = parser.parse_args()
    sys.argv[:] = args

    # The script that we're profiling may chdir, so capture the absolute path
    # to the output file at startup.
    if options.outfile is not None:
        options.outfile = os.path.abspath(options.outfile)

    if len(args) > 0:
        if options.module:
            import runpy
            code = "run_module(modname, run_name='__main__')"
            globs = {
                'run_module': runpy.run_module,
                'modname': args[0]
            }
        else:
            progname = args[0]
            sys.path.insert(0, os.path.dirname(progname))
            with io.open_code(progname) as fp:
                code = compile(fp.read(), progname, 'exec')
            globs = {
                '__file__': progname,
                '__name__': '__main__',
                '__package__': None,
                '__cached__': None,
            }
        try:
            runctx(code, globs, None, options.outfile, options.sort)
        except BrokenPipeError as exc:
            # Prevent "Exception ignored" during interpreter shutdown.
            sys.stdout = None
            sys.exit(exc.errno)
    else:
        parser.print_usage()
    return parser

# When invoked as main program, invoke the profiler on a script
if __name__ == '__main__':
    main()

Filemanager

Name Type Size Permission Actions
__pycache__ Folder 0755
asyncio Folder 0755
collections Folder 0755
concurrent Folder 0755
config-3.9-x86_64-linux-gnu Folder 0755
ctypes Folder 0755
curses Folder 0755
dbm Folder 0755
distutils Folder 0755
email Folder 0755
encodings Folder 0755
ensurepip Folder 0755
html Folder 0755
http Folder 0755
importlib Folder 0755
json Folder 0755
lib-dynload Folder 0755
lib2to3 Folder 0755
logging Folder 0755
multiprocessing Folder 0755
pydoc_data Folder 0755
site-packages Folder 0755
sqlite3 Folder 0755
unittest Folder 0755
urllib Folder 0755
venv Folder 0755
wsgiref Folder 0755
xml Folder 0755
xmlrpc Folder 0755
zoneinfo Folder 0755
LICENSE.txt File 13.61 KB 0644
__future__.py File 5.03 KB 0644
__phello__.foo.py File 64 B 0644
_aix_support.py File 3.31 KB 0644
_bootlocale.py File 1.76 KB 0644
_bootsubprocess.py File 2.61 KB 0644
_collections_abc.py File 28.69 KB 0644
_compat_pickle.py File 8.54 KB 0644
_compression.py File 5.21 KB 0644
_markupbase.py File 14.28 KB 0644
_osx_support.py File 21.26 KB 0644
_py_abc.py File 6.04 KB 0644
_pydecimal.py File 223.31 KB 0644
_pyio.py File 91.13 KB 0644
_sitebuiltins.py File 3.04 KB 0644
_strptime.py File 24.68 KB 0644
_sysconfigdata__linux_x86_64-linux-gnu.py File 39.59 KB 0644
_sysconfigdata_d_linux_x86_64-linux-gnu.py File 39.33 KB 0644
_threading_local.py File 7.05 KB 0644
_weakrefset.py File 5.78 KB 0644
abc.py File 4.8 KB 0644
aifc.py File 31.84 KB 0644
antigravity.py File 500 B 0644
argparse.py File 95.82 KB 0644
ast.py File 54.86 KB 0644
asynchat.py File 11.06 KB 0644
asyncore.py File 19.63 KB 0644
base64.py File 19.41 KB 0755
bdb.py File 30.65 KB 0644
binhex.py File 14.44 KB 0644
bisect.py File 2.29 KB 0644
bz2.py File 12.16 KB 0644
cProfile.py File 6.21 KB 0755
calendar.py File 24.25 KB 0644
cgi.py File 33.15 KB 0755
cgitb.py File 11.81 KB 0644
chunk.py File 5.31 KB 0644
cmd.py File 14.51 KB 0644
code.py File 10.37 KB 0644
codecs.py File 35.81 KB 0644
codeop.py File 6.18 KB 0644
colorsys.py File 3.97 KB 0644
compileall.py File 19.63 KB 0644
configparser.py File 53.3 KB 0644
contextlib.py File 24.05 KB 0644
contextvars.py File 129 B 0644
copy.py File 8.45 KB 0644
copyreg.py File 7.1 KB 0644
crypt.py File 3.73 KB 0644
csv.py File 15.77 KB 0644
dataclasses.py File 48.42 KB 0644
datetime.py File 87.09 KB 0644
decimal.py File 320 B 0644
difflib.py File 81.35 KB 0644
dis.py File 20.09 KB 0644
doctest.py File 102.12 KB 0644
enum.py File 38.52 KB 0644
filecmp.py File 9.79 KB 0644
fileinput.py File 14.44 KB 0644
fnmatch.py File 5.86 KB 0644
formatter.py File 14.79 KB 0644
fractions.py File 23.75 KB 0644
ftplib.py File 34.66 KB 0644
functools.py File 37.97 KB 0644
genericpath.py File 4.86 KB 0644
getopt.py File 7.31 KB 0644
getpass.py File 5.85 KB 0644
gettext.py File 26.63 KB 0644
glob.py File 5.69 KB 0644
graphlib.py File 9.35 KB 0644
gzip.py File 21.26 KB 0644
hashlib.py File 9.78 KB 0644
heapq.py File 22.34 KB 0644
hmac.py File 6.84 KB 0644
imaplib.py File 53.62 KB 0644
imghdr.py File 3.72 KB 0644
imp.py File 10.29 KB 0644
inspect.py File 115.46 KB 0644
io.py File 3.46 KB 0644
ipaddress.py File 76.04 KB 0644
keyword.py File 1.02 KB 0644
linecache.py File 5.33 KB 0644
locale.py File 76.44 KB 0644
lzma.py File 12.92 KB 0644
mailbox.py File 76.95 KB 0644
mailcap.py File 8.9 KB 0644
mimetypes.py File 21.06 KB 0644
modulefinder.py File 23.83 KB 0644
netrc.py File 5.44 KB 0644
nntplib.py File 40.06 KB 0644
ntpath.py File 27.08 KB 0644
nturl2path.py File 2.82 KB 0644
numbers.py File 10.1 KB 0644
opcode.py File 5.53 KB 0644
operator.py File 10.5 KB 0644
optparse.py File 58.95 KB 0644
os.py File 38.15 KB 0644
pathlib.py File 52.81 KB 0644
pdb.py File 61.77 KB 0755
pickle.py File 63.4 KB 0644
pickletools.py File 91.29 KB 0644
pipes.py File 8.71 KB 0644
pkgutil.py File 23.71 KB 0644
platform.py File 39.66 KB 0755
plistlib.py File 27.59 KB 0644
poplib.py File 14.84 KB 0644
posixpath.py File 15.35 KB 0644
pprint.py File 22 KB 0644
profile.py File 22.36 KB 0755
pstats.py File 28.64 KB 0644
pty.py File 4.69 KB 0644
py_compile.py File 8.01 KB 0644
pyclbr.py File 14.9 KB 0644
pydoc.py File 107.04 KB 0755
queue.py File 11.23 KB 0644
quopri.py File 7.11 KB 0755
random.py File 30.75 KB 0644
re.py File 15.49 KB 0644
reprlib.py File 5.14 KB 0644
rlcompleter.py File 7.47 KB 0644
runpy.py File 12.78 KB 0644
sched.py File 6.29 KB 0644
secrets.py File 1.99 KB 0644
selectors.py File 19.08 KB 0644
shelve.py File 8.33 KB 0644
shlex.py File 13.18 KB 0644
shutil.py File 51.79 KB 0644
signal.py File 2.38 KB 0644
site.py File 21.33 KB 0644
smtpd.py File 34.02 KB 0755
smtplib.py File 44.35 KB 0755
sndhdr.py File 6.93 KB 0644
socket.py File 36.05 KB 0644
socketserver.py File 26.66 KB 0644
sre_compile.py File 27.32 KB 0644
sre_constants.py File 7.01 KB 0644
sre_parse.py File 39.82 KB 0644
ssl.py File 51.3 KB 0644
stat.py File 5.36 KB 0644
statistics.py File 37.17 KB 0644
string.py File 10.32 KB 0644
stringprep.py File 12.61 KB 0644
struct.py File 257 B 0644
subprocess.py File 81.61 KB 0644
sunau.py File 17.73 KB 0644
symbol.py File 2.23 KB 0644
symtable.py File 7.72 KB 0644
sysconfig.py File 24.33 KB 0644
tabnanny.py File 11.15 KB 0755
tarfile.py File 104.39 KB 0755
telnetlib.py File 22.71 KB 0644
tempfile.py File 27.31 KB 0644
textwrap.py File 18.95 KB 0644
this.py File 1003 B 0644
threading.py File 52.91 KB 0644
timeit.py File 13.18 KB 0755
token.py File 2.31 KB 0644
tokenize.py File 25.28 KB 0644
trace.py File 28.54 KB 0755
traceback.py File 24.08 KB 0644
tracemalloc.py File 17.62 KB 0644
tty.py File 879 B 0644
types.py File 9.56 KB 0644
typing.py File 75.24 KB 0644
uu.py File 7.11 KB 0644
uuid.py File 26.68 KB 0644
warnings.py File 19.23 KB 0644
wave.py File 17.58 KB 0644
weakref.py File 21.05 KB 0644
webbrowser.py File 23.53 KB 0755
xdrlib.py File 5.77 KB 0644
zipapp.py File 7.36 KB 0644
zipfile.py File 86.17 KB 0644
zipimport.py File 30.04 KB 0644