3 � f�P � @ sD d Z ddddddddd d ddgZd dlZd dlZd dlZd dlZd dlmZ d dlmZ d dl m Z mZ d dlm Z mZ G dd� de�Zd5dd�Zdd� Zdd� Zdd� Zdd� Zdd� Zd d!� Zd"d#� Zd6d%d&�Zd'd � Zd(d� Zd)d� Zd*d� Zd+d� Zd7d-d �Zd.d� Z d8d/d0�Z!d9d1d�Z"d:d2d�Z#d;d3d�Z$d<d4d�Z%dS )=aq Basic statistics module. This module provides functions for calculating statistics of data, including averages, variance, and standard deviation. Calculating averages -------------------- ================== ============================================= Function Description ================== ============================================= mean Arithmetic mean (average) of data. harmonic_mean Harmonic mean of data. median Median (middle value) of data. median_low Low median of data. median_high High median of data. median_grouped Median, or 50th percentile, of grouped data. mode Mode (most common value) of data. ================== ============================================= Calculate the arithmetic mean ("the average") of data: >>> mean([-1.0, 2.5, 3.25, 5.75]) 2.625 Calculate the standard median of discrete data: >>> median([2, 3, 4, 5]) 3.5 Calculate the median, or 50th percentile, of data grouped into class intervals centred on the data values provided. E.g. if your data points are rounded to the nearest whole number: >>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS 2.8333333333... This should be interpreted in this way: you have two data points in the class interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in the class interval 3.5-4.5. The median of these data points is 2.8333... Calculating variability or spread --------------------------------- ================== ============================================= Function Description ================== ============================================= pvariance Population variance of data. variance Sample variance of data. pstdev Population standard deviation of data. stdev Sample standard deviation of data. ================== ============================================= Calculate the standard deviation of sample data: >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS 4.38961843444... If you have previously calculated the mean, you can pass it as the optional second argument to the four "spread" functions to avoid recalculating it: >>> data = [1, 2, 2, 4, 4, 4, 5, 6] >>> mu = mean(data) >>> pvariance(data, mu) 2.5 Exceptions ---------- A single exception is defined: StatisticsError is a subclass of ValueError. �StatisticsError�pstdev� pvariance�stdev�variance�median� median_low�median_high�median_grouped�mean�mode� harmonic_mean� N)�Fraction)�Decimal)�groupby�chain)�bisect_left�bisect_rightc @ s e Zd ZdS )r N)�__name__� __module__�__qualname__� r r �//opt/alt/python36/lib64/python3.6/statistics.pyr c s c C s� d}t |�\}}||i}|j}ttt|��}xRt| t�D ]D\}} t||�}x0tt | �D ]"\}}|d7 }||d�| ||<