404

[ Avaa Bypassed ]




Upload:

Command:

elspacio@18.118.128.2: ~ $
o

6��fŨ�@s�dZgd�ZddlZddlZddlZddlmZddlmZddl	m
Z
mZddlm
Z
mZddlmZmZmZmZmZmZmZmZdd	lmZdd
lmZmZGdd�de�Zd
d�Zdd�Zdd�Z dd�Z!dd�Z"dd�Z#dd�Z$dOdd�Z%dd�Z&d d!�Z'd"d#�Z(dPd$d%�Z)d&d'�Z*d(d)�Z+d*d+�Z,dQd-d.�Z-d/d0�Z.d1d2�Z/d3d4d5�d6d7�Z0dPd8d9�Z1dPd:d;�Z2dPd<d=�Z3dPd>d?�Z4dPd@dA�Z5dBdC�Z6dDdE�Z7edFdG�Z8dHdI�Z9dJdK�Z:zddLl;m:Z:Wn	e<y�YnwGdMdN�dN�Z=dS)Ra�

Basic statistics module.

This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages
--------------------

==================  ==================================================
Function            Description
==================  ==================================================
mean                Arithmetic mean (average) of data.
fmean               Fast, floating point arithmetic mean.
geometric_mean      Geometric mean of data.
harmonic_mean       Harmonic mean of data.
median              Median (middle value) of data.
median_low          Low median of data.
median_high         High median of data.
median_grouped      Median, or 50th percentile, of grouped data.
mode                Mode (most common value) of data.
multimode           List of modes (most common values of data).
quantiles           Divide data into intervals with equal probability.
==================  ==================================================

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625


Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5


Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...


Calculating variability or spread
---------------------------------

==================  =============================================
Function            Description
==================  =============================================
pvariance           Population variance of data.
variance            Sample variance of data.
pstdev              Population standard deviation of data.
stdev               Sample standard deviation of data.
==================  =============================================

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5


Statistics for relations between two inputs
-------------------------------------------

==================  ====================================================
Function            Description
==================  ====================================================
covariance          Sample covariance for two variables.
correlation         Pearson's correlation coefficient for two variables.
linear_regression   Intercept and slope for simple linear regression.
==================  ====================================================

Calculate covariance, Pearson's correlation, and simple linear regression
for two inputs:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> covariance(x, y)
0.75
>>> correlation(x, y)  #doctest: +ELLIPSIS
0.31622776601...
>>> linear_regression(x, y)  #doctest:
LinearRegression(slope=0.1, intercept=1.5)


Exceptions
----------

A single exception is defined: StatisticsError is a subclass of ValueError.

)�
NormalDist�StatisticsError�correlation�
covariance�fmean�geometric_mean�
harmonic_mean�linear_regression�mean�median�median_grouped�median_high�
median_low�mode�	multimode�pstdev�	pvariance�	quantiles�stdev�variance�N��Fraction)�Decimal)�groupby�repeat)�bisect_left�bisect_right)�hypot�sqrt�fabs�exp�erf�tau�log�fsum)�
itemgetter)�Counter�
namedtuplec@seZdZdS)rN)�__name__�
__module__�__qualname__�r+r+�1/opt/alt/python310/lib64/python3.10/statistics.pyr�src
Cs�d}i}|j}t}t|t�D] \}}t||�}tt|�D]\}}|d7}||d�|||<qqd|vr>|d}	t|	�r=J�ntdd�|�	�D��}	||	|fS)a�_sum(data) -> (type, sum, count)

    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.

    Examples
    --------

    >>> _sum([3, 2.25, 4.5, -0.5, 0.25])
    (<class 'float'>, Fraction(19, 2), 5)

    Some sources of round-off error will be avoided:

    # Built-in sum returns zero.
    >>> _sum([1e50, 1, -1e50] * 1000)
    (<class 'float'>, Fraction(1000, 1), 3000)

    Fractions and Decimals are also supported:

    >>> from fractions import Fraction as F
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)

    >>> from decimal import Decimal as D
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
    >>> _sum(data)
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)

    Mixed types are currently treated as an error, except that int is
    allowed.
    r�Ncs��|]
\}}t||�VqdS�Nr��.0�d�nr+r+r,�	<genexpr>���z_sum.<locals>.<genexpr>)
�get�intr�type�_coerce�map�_exact_ratio�	_isfinite�sum�items)
�data�count�partialsZpartials_get�T�typ�valuesr3r2�totalr+r+r,�_sum�s 
�
rFcCs(z|��WStyt�|�YSwr/)Z	is_finite�AttributeError�mathZisfinite)�xr+r+r,r<�s

�r<cCs�|tusJd��||ur|S|tus|tur|S|tur|St||�r%|St||�r,|St|t�r3|St|t�r:|St|t�rFt|t�rF|St|t�rRt|t�rR|Sd}t||j|jf��)z�Coerce types T and S to a common type, or raise TypeError.

    Coercion rules are currently an implementation detail. See the CoerceTest
    test class in test_statistics for details.
    zinitial type T is boolz"don't know how to coerce %s and %s)�boolr7�
issubclassr�float�	TypeErrorr()rB�S�msgr+r+r,r9�sr9c	Cs~z|��WStyYnttfy"t|�rJ�|dfYSwz|j|jfWSty>dt|�j�d�}t	|��w)z�Return Real number x to exact (numerator, denominator) pair.

    >>> _exact_ratio(0.25)
    (1, 4)

    x is expected to be an int, Fraction, Decimal or float.
    Nzcan't convert type 'z' to numerator/denominator)
�as_integer_ratiorG�
OverflowError�
ValueErrorr<�	numerator�denominatorr8r(rM)rIrOr+r+r,r;�s
��r;cCsft|�|ur|St|t�r|jdkrt}z||�WSty2t|t�r1||j�||j�YS�w)z&Convert value to given numeric type T.r-)r8rKr7rTrLrMrrS)�valuerBr+r+r,�_converts

�rVcCs*t||�}|t|�kr|||kr|St�)z,Locate the leftmost value exactly equal to x)r�lenrR)�arI�ir+r+r,�
_find_lteqs
rZcCs:t|||d�}|t|�dkr||d|kr|dSt�)z-Locate the rightmost value exactly equal to x)�lor-)rrWrR)rX�lrIrYr+r+r,�
_find_rteq"s r]�negative valueccs&�|D]
}|dkr
t|��|VqdS)z7Iterate over values, failing if any are less than zero.rN)r)rD�errmsgrIr+r+r,�	_fail_neg*s��r`cCsTt|�|ur
t|�}t|�}|dkrtd��t|�\}}}||ks#J�t|||�S)a�Return the sample arithmetic mean of data.

    >>> mean([1, 2, 3, 4, 4])
    2.8

    >>> from fractions import Fraction as F
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
    Fraction(13, 21)

    >>> from decimal import Decimal as D
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
    Decimal('0.5625')

    If ``data`` is empty, StatisticsError will be raised.
    r-z%mean requires at least one data point)�iter�listrWrrFrV)r?r3rBrEr@r+r+r,r	4sr	cshzt|��Wntyd��fdd�}t||��}Ynwt|�}z|�WSty3td�d�w)z�Convert data to floats and compute the arithmetic mean.

    This runs faster than the mean() function and it always returns a float.
    If the input dataset is empty, it raises a StatisticsError.

    >>> fmean([3.5, 4.0, 5.25])
    4.25
    rc3s"�t|dd�D]\�}|VqdS)Nr-)�start)�	enumerate)�iterablerI�r3r+r,r@\s��zfmean.<locals>.countz&fmean requires at least one data pointN)rWrMr$�ZeroDivisionErrorr)r?r@rEr+rfr,rNs	�	

�rcCs.z
tttt|���WStytd�d�w)aYConvert data to floats and compute the geometric mean.

    Raises a StatisticsError if the input dataset is empty,
    if it contains a zero, or if it contains a negative value.

    No special efforts are made to achieve exact results.
    (However, this may change in the future.)

    >>> round(geometric_mean([54, 24, 36]), 9)
    36.0
    zGgeometric mean requires a non-empty dataset containing positive numbersN)r rr:r#rRr)r?r+r+r,ris��rc
Cs2t|�|ur
t|�}d}t|�}|dkrtd��|dkr:|dur:|d}t|tjtf�r6|dkr4t|��|Std��|durFt	d|�}|}n#t|�|urPt|�}t|�|krZtd��t
dd	�t||�D��\}}}zt||�}t
d
d	�t||�D��\}}}	Wn
t
y�YdSw|dkr�td��t|||�S)a�Return the harmonic mean of data.

    The harmonic mean is the reciprocal of the arithmetic mean of the
    reciprocals of the data.  It can be used for averaging ratios or
    rates, for example speeds.

    Suppose a car travels 40 km/hr for 5 km and then speeds-up to
    60 km/hr for another 5 km. What is the average speed?

        >>> harmonic_mean([40, 60])
        48.0

    Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
    speeds-up to 60 km/hr for the remaining 30 km of the journey. What
    is the average speed?

        >>> harmonic_mean([40, 60], weights=[5, 30])
        56.0

    If ``data`` is empty, or any element is less than zero,
    ``harmonic_mean`` will raise ``StatisticsError``.
    z.harmonic mean does not support negative valuesr-z.harmonic_mean requires at least one data pointNrzunsupported typez*Number of weights does not match data sizecss�|]}|VqdSr/r+)r1�wr+r+r,r4�s�z harmonic_mean.<locals>.<genexpr>css$�|]
\}}|r||ndVqdS)rNr+)r1rhrIr+r+r,r4���"zWeighted sum must be positive)rarbrWr�
isinstance�numbersZRealrrMrrFr`�ziprgrV)
r?Zweightsr_r3rIZsum_weights�_rBrEr@r+r+r,r|s<

"�rcCsXt|�}t|�}|dkrtd��|ddkr||dS|d}||d||dS)aBReturn the median (middle value) of numeric data.

    When the number of data points is odd, return the middle data point.
    When the number of data points is even, the median is interpolated by
    taking the average of the two middle values:

    >>> median([1, 3, 5])
    3
    >>> median([1, 3, 5, 7])
    4.0

    r�no median for empty data�r-��sortedrWr)r?r3rYr+r+r,r
�s
r
cCsHt|�}t|�}|dkrtd��|ddkr||dS||ddS)a	Return the low median of numeric data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the smaller of the two middle values is returned.

    >>> median_low([1, 3, 5])
    3
    >>> median_low([1, 3, 5, 7])
    3

    rrnror-rp�r?r3r+r+r,r
�sr
cCs,t|�}t|�}|dkrtd��||dS)aReturn the high median of data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the larger of the two middle values is returned.

    >>> median_high([1, 3, 5])
    3
    >>> median_high([1, 3, 5, 7])
    5

    rrnrorprrr+r+r,r�s
rr-c
Cs�t|�}t|�}|dkrtd��|dkr|dS||d}||fD]}t|ttf�r1td|��q"z||d}WntyMt|�t|�d}Ynwt||�}t	|||�}|}||d}	|||d||	S)a�Return the 50th percentile (median) of grouped continuous data.

    >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
    3.7
    >>> median_grouped([52, 52, 53, 54])
    52.5

    This calculates the median as the 50th percentile, and should be
    used when your data is continuous and grouped. In the above example,
    the values 1, 2, 3, etc. actually represent the midpoint of classes
    0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
    class 3.5-4.5, and interpolation is used to estimate it.

    Optional argument ``interval`` represents the class interval, and
    defaults to 1. Changing the class interval naturally will change the
    interpolated 50th percentile value:

    >>> median_grouped([1, 3, 3, 5, 7], interval=1)
    3.25
    >>> median_grouped([1, 3, 3, 5, 7], interval=2)
    3.5

    This function does not check whether the data points are at least
    ``interval`` apart.
    rrnr-rozexpected number but got %r)
rqrWrrj�str�bytesrMrLrZr])
r?Zintervalr3rI�obj�L�l1�l2Zcf�fr+r+r,r�s*��
rcCs:tt|���d�}z|ddWStytd�d�w)axReturn the most common data point from discrete or nominal data.

    ``mode`` assumes discrete data, and returns a single value. This is the
    standard treatment of the mode as commonly taught in schools:

        >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
        3

    This also works with nominal (non-numeric) data:

        >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
        'red'

    If there are multiple modes with same frequency, return the first one
    encountered:

        >>> mode(['red', 'red', 'green', 'blue', 'blue'])
        'red'

    If *data* is empty, ``mode``, raises StatisticsError.

    r-rzno mode for empty dataN)r&ra�most_common�
IndexErrorr)r?Zpairsr+r+r,r,s
�rcCs@tt|����}tt|td�d�dgf�\}}tttd�|��S)a.Return a list of the most frequently occurring values.

    Will return more than one result if there are multiple modes
    or an empty list if *data* is empty.

    >>> multimode('aabbbbbbbbcc')
    ['b']
    >>> multimode('aabbbbccddddeeffffgg')
    ['b', 'd', 'f']
    >>> multimode('')
    []
    r-)�keyr)r&rarz�nextrr%rbr:)r?ZcountsZmaxcountZ
mode_itemsr+r+r,rJs
r��	exclusive)r3�methodc
Cs<|dkrtd��t|�}t|�}|dkrtd��|dkrL|d}g}td|�D]"}t|||�\}}||||||d||}	|�|	�q'|S|dkr�|d}g}td|�D]9}|||}|dkridn||dkrs|dn|}||||}||d||||||}	|�|	�q[|Std|����)a�Divide *data* into *n* continuous intervals with equal probability.

    Returns a list of (n - 1) cut points separating the intervals.

    Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
    Set *n* to 100 for percentiles which gives the 99 cuts points that
    separate *data* in to 100 equal sized groups.

    The *data* can be any iterable containing sample.
    The cut points are linearly interpolated between data points.

    If *method* is set to *inclusive*, *data* is treated as population
    data.  The minimum value is treated as the 0th percentile and the
    maximum value is treated as the 100th percentile.
    r-zn must be at least 1roz"must have at least two data pointsZ	inclusiverzUnknown method: )rrqrW�range�divmod�appendrR)
r?r3r�Zld�m�resultrY�jZdeltaZinterpolatedr+r+r,r�s2$$$rcs��durt�fdd�|D��\}}}||fSt|�\}}}||��\}}t�}tt|�D]\}}	|||	|}
|	|}||||
|
7<q-d|vr\|d}t|�rXJ�||fStdd�|��D��}||fS)a;Return sum of square deviations of sequence data.

    If ``c`` is None, the mean is calculated in one pass, and the deviations
    from the mean are calculated in a second pass. Otherwise, deviations are
    calculated from ``c`` as given. Use the second case with care, as it can
    lead to garbage results.
    Nc3��|]	}|�dVqdS)roNr+)r1rI��cr+r,r4���z_ss.<locals>.<genexpr>csr.r/rr0r+r+r,r4�r5)rFrPr&r:r;r<r=r>)r?r�rBrEr@Zmean_nZmean_drAr3r2Zdiff_nZdiff_dr+r�r,�_ss�s �r�cCsLt|�|ur
t|�}t|�}|dkrtd��t||�\}}t||d|�S)a�Return the sample variance of data.

    data should be an iterable of Real-valued numbers, with at least two
    values. The optional argument xbar, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function when your data is a sample from a population. To
    calculate the variance from the entire population, see ``pvariance``.

    Examples:

    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
    >>> variance(data)
    1.3720238095238095

    If you have already calculated the mean of your data, you can pass it as
    the optional second argument ``xbar`` to avoid recalculating it:

    >>> m = mean(data)
    >>> variance(data, m)
    1.3720238095238095

    This function does not check that ``xbar`` is actually the mean of
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
    impossible results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('31.01875')

    >>> from fractions import Fraction as F
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
    Fraction(67, 108)

    roz*variance requires at least two data pointsr-�rarbrWrr�rV)r?�xbarr3rB�ssr+r+r,r�s&rcCsHt|�|ur
t|�}t|�}|dkrtd��t||�\}}t|||�S)a,Return the population variance of ``data``.

    data should be a sequence or iterable of Real-valued numbers, with at least one
    value. The optional argument mu, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function to calculate the variance from the entire population.
    To estimate the variance from a sample, the ``variance`` function is
    usually a better choice.

    Examples:

    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
    >>> pvariance(data)
    1.25

    If you have already calculated the mean of the data, you can pass it as
    the optional second argument to avoid recalculating it:

    >>> mu = mean(data)
    >>> pvariance(data, mu)
    1.25

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('24.815')

    >>> from fractions import Fraction as F
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
    Fraction(13, 72)

    r-z*pvariance requires at least one data pointr�)r?�mur3rBr�r+r+r,rs#rcC�2t||�}z|��WStyt�|�YSw)z�Return the square root of the sample variance.

    See ``variance`` for arguments and other details.

    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    1.0810874155219827

    )rrrGrH)r?r��varr+r+r,r0�

�rcCr�)z�Return the square root of the population variance.

    See ``pvariance`` for arguments and other details.

    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    0.986893273527251

    )rrrGrH)r?r�r�r+r+r,rCr�rcsnt|�}t|�|krtd��|dkrtd��t|�|�t|�|�t��fdd�t||�D��}||dS)apCovariance

    Return the sample covariance of two inputs *x* and *y*. Covariance
    is a measure of the joint variability of two inputs.

    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
    >>> covariance(x, y)
    0.75
    >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
    >>> covariance(x, z)
    -7.5
    >>> covariance(z, x)
    -7.5

    zDcovariance requires that both inputs have same number of data pointsroz,covariance requires at least two data pointsc3�$�|]
\}}|�|�VqdSr/r+�r1�xi�yi�r��ybarr+r,r4urizcovariance.<locals>.<genexpr>r-)rWrr$rl)rI�yr3�sxyr+r�r,r]srcs�t|�}t|�|krtd��|dkrtd��t|�|�t|�|�t��fdd�t||�D��}t�fdd�|D��}t�fdd�|D��}z	|t||�WSty[td��w)	aPearson's correlation coefficient

    Return the Pearson's correlation coefficient for two inputs. Pearson's
    correlation coefficient *r* takes values between -1 and +1. It measures the
    strength and direction of the linear relationship, where +1 means very
    strong, positive linear relationship, -1 very strong, negative linear
    relationship, and 0 no linear relationship.

    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
    >>> correlation(x, x)
    1.0
    >>> correlation(x, y)
    -1.0

    zEcorrelation requires that both inputs have same number of data pointsroz-correlation requires at least two data pointsc3r�r/r+r�r�r+r,r4�rizcorrelation.<locals>.<genexpr>c3r���@Nr+�r1r��r�r+r,r4�r�c3r�r�r+)r1r�)r�r+r,r4�r�z&at least one of the inputs is constant)rWrr$rlrrg)rIr�r3r��sxxZsyyr+r�r,rys�r�LinearRegression��slope�	interceptcs�t|�}t|�|krtd��|dkrtd��t|�|�t|�|�t��fdd�t||�D��}t�fdd�|D��}z||}WntyMtd��w�|�}t||d�S)	a�Slope and intercept for simple linear regression.

    Return the slope and intercept of simple linear regression
    parameters estimated using ordinary least squares. Simple linear
    regression describes relationship between an independent variable
    *x* and a dependent variable *y* in terms of linear function:

        y = slope * x + intercept + noise

    where *slope* and *intercept* are the regression parameters that are
    estimated, and noise represents the variability of the data that was
    not explained by the linear regression (it is equal to the
    difference between predicted and actual values of the dependent
    variable).

    The parameters are returned as a named tuple.

    >>> x = [1, 2, 3, 4, 5]
    >>> noise = NormalDist().samples(5, seed=42)
    >>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
    >>> linear_regression(x, y)  #doctest: +ELLIPSIS
    LinearRegression(slope=3.09078914170..., intercept=1.75684970486...)

    zKlinear regression requires that both inputs have same number of data pointsroz3linear regression requires at least two data pointsc3r�r/r+r�r�r+r,r4�riz$linear_regression.<locals>.<genexpr>c3r�r�r+r�r�r+r,r4�r�z
x is constantr�)rWrr$rlrgr�)rIr�r3r�r�r�r�r+r�r,r�s �rcCs�|d}t|�dkrXd||}d|d|d|d|d|d	|d
|d|}d|d
|d|d|d|d|d|d}||}|||S|dkr^|nd|}tt|��}|dkr�|d}d|d|d|d|d|d|d|d}d|d |d!|d"|d#|d$|d%|d}n@|d}d&|d'|d(|d)|d*|d+|d,|d-}d.|d/|d0|d1|d2|d3|d4|d}||}|dkr�|}|||S)5N��?g333333�?g��Q��?g^�}o)��@g�E.k�R�@g ��Ul�@g*u��>l�@g�N����@g�"]Ξ@gnC���`@gu��@giK��~j�@gv��|E�@g��d�|1�@gfR��r��@g��u.2�@g���~y�@g�n8(E@��?�g@g�������?g鬷�ZaI?gg�El�D�?g7\�����?g�uS�S�?g�=�.
@gj%b�@g���Hw�@gjR�e�?g�9dh?
>g('߿��A?g��~z �?g@�3��?gɅ3��?g3fR�x�?gI�F��l@g����t��>g*�Y��n�>gESB\T?g�N;A+�?g�UR1��?gE�F���?gP�n��@g&�>���@g����i�<g�@�F�>g�tcI,\�>g�ŝ���I?g*F2�v�?g�C4�?g��O�1�?)rrr#)�pr��sigma�q�rZnumZdenrIr+r+r,�_normal_dist_inv_cdf�sd�����������������������������������������������������	��������������������������r�)r�c@seZdZdZddd�Zd>dd�Zed	d
��Zdd�d
d�Zdd�Z	dd�Z
dd�Zd?dd�Zdd�Z
dd�Zedd��Zedd��Zed d!��Zed"d#��Zed$d%��Zd&d'�Zd(d)�Zd*d+�Zd,d-�Zd.d/�Zd0d1�ZeZd2d3�ZeZd4d5�Zd6d7�Zd8d9�Z d:d;�Z!d<d=�Z"dS)@rz(Normal distribution of a random variablez(Arithmetic mean of a normal distributionz+Standard deviation of a normal distribution��_mu�_sigmar�r�cCs(|dkrtd��t|�|_t|�|_dS)zDNormalDist where mu is the mean and sigma is the standard deviation.r�zsigma must be non-negativeN)rrLr�r�)�selfr�r�r+r+r,�__init__%s
zNormalDist.__init__cCs.t|ttf�st|�}t|�}||t||��S)z5Make a normal distribution instance from sample data.)rjrb�tuplerr)�clsr?r�r+r+r,�from_samples,szNormalDist.from_samplesN)�seedcsB|durtjnt�|�j�|j|j�����fdd�t|�D�S)z=Generate *n* samples for a given mean and standard deviation.Ncsg|]}�����qSr+r+�r1rY��gaussr�r�r+r,�
<listcomp>8sz&NormalDist.samples.<locals>.<listcomp>)�randomr�ZRandomr�r�r�)r�r3r�r+r�r,�samples4szNormalDist.samplescCs<|jd}|std��t||jdd|�tt|�S)z4Probability density function.  P(x <= X < x+dx) / dxr�z$pdf() not defined when sigma is zerog�)r�rr r�rr")r�rIrr+r+r,�pdf:s
&zNormalDist.pdfcCs2|jstd��ddt||j|jtd��S)z,Cumulative distribution function.  P(X <= x)z$cdf() not defined when sigma is zeror�r�r�)r�rr!r�r�r�rIr+r+r,�cdfAs$zNormalDist.cdfcCs:|dks|dkrtd��|jdkrtd��t||j|j�S)aSInverse cumulative distribution function.  x : P(X <= x) = p

        Finds the value of the random variable such that the probability of
        the variable being less than or equal to that value equals the given
        probability.

        This function is also called the percent point function or quantile
        function.
        r�r�z$p must be in the range 0.0 < p < 1.0z-cdf() not defined when sigma at or below zero)rr�r�r�)r�r�r+r+r,�inv_cdfGs


zNormalDist.inv_cdfr~cs��fdd�td��D�S)anDivide into *n* continuous intervals with equal probability.

        Returns a list of (n - 1) cut points separating the intervals.

        Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
        Set *n* to 100 for percentiles which gives the 99 cuts points that
        separate the normal distribution in to 100 equal sized groups.
        csg|]	}��|���qSr+)r�r��r3r�r+r,r�`sz(NormalDist.quantiles.<locals>.<listcomp>r-)r�)r�r3r+r�r,rWs	zNormalDist.quantilescCst|t�s	td��||}}|j|jf|j|jfkr||}}|j|j}}|r*|s.td��||}t|j|j�}|sKdt|d|jt	d��S|j||j|}|j|jt	|d|t
||��}	||	|}
||	|}dt|�|
�|�|
��t|�|�|�|��S)a�Compute the overlapping coefficient (OVL) between two normal distributions.

        Measures the agreement between two normal probability distributions.
        Returns a value between 0.0 and 1.0 giving the overlapping area in
        the two underlying probability density functions.

            >>> N1 = NormalDist(2.4, 1.6)
            >>> N2 = NormalDist(3.2, 2.0)
            >>> N1.overlap(N2)
            0.8035050657330205
        z$Expected another NormalDist instancez(overlap() not defined when sigma is zeror�r�)rjrrMr�r�rrrr!rr#r�)r��other�X�YZX_varZY_varZdvZdmrX�b�x1�x2r+r+r,�overlapbs"


(4zNormalDist.overlapcCs|jstd��||j|jS)z�Compute the Standard Score.  (x - mean) / stdev

        Describes *x* in terms of the number of standard deviations
        above or below the mean of the normal distribution.
        z'zscore() not defined when sigma is zero)r�rr�r�r+r+r,�zscore�szNormalDist.zscorecC�|jS)z+Arithmetic mean of the normal distribution.�r��r�r+r+r,r	��zNormalDist.meancCr�)z,Return the median of the normal distributionr�r�r+r+r,r
�r�zNormalDist.mediancCr�)z�Return the mode of the normal distribution

        The mode is the value x where which the probability density
        function (pdf) takes its maximum value.
        r�r�r+r+r,r�szNormalDist.modecCr�)z.Standard deviation of the normal distribution.�r�r�r+r+r,r�r�zNormalDist.stdevcCs
|jdS)z!Square of the standard deviation.r�r�r�r+r+r,r�s
zNormalDist.variancecCs8t|t�rt|j|jt|j|j��St|j||j�S)ajAdd a constant or another NormalDist instance.

        If *other* is a constant, translate mu by the constant,
        leaving sigma unchanged.

        If *other* is a NormalDist, add both the means and the variances.
        Mathematically, this works only if the two distributions are
        independent or if they are jointly normally distributed.
        �rjrr�rr��r�r�r+r+r,�__add__��

zNormalDist.__add__cCs8t|t�rt|j|jt|j|j��St|j||j�S)asSubtract a constant or another NormalDist instance.

        If *other* is a constant, translate by the constant mu,
        leaving sigma unchanged.

        If *other* is a NormalDist, subtract the means and add the variances.
        Mathematically, this works only if the two distributions are
        independent or if they are jointly normally distributed.
        r�r�r+r+r,�__sub__�r�zNormalDist.__sub__cCst|j||jt|��S)z�Multiply both mu and sigma by a constant.

        Used for rescaling, perhaps to change measurement units.
        Sigma is scaled with the absolute value of the constant.
        �rr�r�rr�r+r+r,�__mul__��zNormalDist.__mul__cCst|j||jt|��S)z�Divide both mu and sigma by a constant.

        Used for rescaling, perhaps to change measurement units.
        Sigma is scaled with the absolute value of the constant.
        r�r�r+r+r,�__truediv__�r�zNormalDist.__truediv__cCst|j|j�S)zReturn a copy of the instance.�rr�r��r�r+r+r,�__pos__�szNormalDist.__pos__cCst|j|j�S)z(Negates mu while keeping sigma the same.r�r�r+r+r,�__neg__��zNormalDist.__neg__cCs
||S)z<Subtract a NormalDist from a constant or another NormalDist.r+r�r+r+r,�__rsub__�s
zNormalDist.__rsub__cCs&t|t�stS|j|jko|j|jkS)zFTwo NormalDist objects are equal if their mu and sigma are both equal.)rjr�NotImplementedr�r�r�r+r+r,�__eq__�s
zNormalDist.__eq__cCst|j|jf�S)zCNormalDist objects hash equal if their mu and sigma are both equal.)�hashr�r�r�r+r+r,�__hash__�r�zNormalDist.__hash__cCs t|�j�d|j�d|j�d�S)Nz(mu=z, sigma=�))r8r(r�r�r�r+r+r,�__repr__�s zNormalDist.__repr__cCs|j|jfSr/r�r�r+r+r,�__getstate__�szNormalDist.__getstate__cCs|\|_|_dSr/r�)r��stater+r+r,�__setstate__�szNormalDist.__setstate__)r�r�)r~)#r(r)r*�__doc__�	__slots__r��classmethodr�r�r�r�r�rr�r��propertyr	r
rrrr�r�r�r�r�r��__radd__r��__rmul__r�r�r�r�r�r+r+r+r,rsN�


"




r)r^r/)r-)>r��__all__rHrkr�Z	fractionsrZdecimalr�	itertoolsrrZbisectrrrrrr r!r"r#r$�operatorr%�collectionsr&r'rRrrFr<r9r;rVrZr]r`r	rrrr
r
rrrrrr�rrrrrrr�rr�Z_statistics�ImportErrorrr+r+r+r,�<module>s`j(4


8
77
8

/
,

!-K�

Filemanager

Name Type Size Permission Actions
__future__.cpython-310.opt-1.pyc File 4.05 KB 0644
__future__.cpython-310.opt-2.pyc File 2.13 KB 0644
__future__.cpython-310.pyc File 4.05 KB 0644
__phello__.foo.cpython-310.opt-1.pyc File 146 B 0644
__phello__.foo.cpython-310.opt-2.pyc File 146 B 0644
__phello__.foo.cpython-310.pyc File 146 B 0644
_aix_support.cpython-310.opt-1.pyc File 2.83 KB 0644
_aix_support.cpython-310.opt-2.pyc File 1.62 KB 0644
_aix_support.cpython-310.pyc File 2.83 KB 0644
_bootsubprocess.cpython-310.opt-1.pyc File 2.26 KB 0644
_bootsubprocess.cpython-310.opt-2.pyc File 2.04 KB 0644
_bootsubprocess.cpython-310.pyc File 2.26 KB 0644
_collections_abc.cpython-310.opt-1.pyc File 32.17 KB 0644
_collections_abc.cpython-310.opt-2.pyc File 26.23 KB 0644
_collections_abc.cpython-310.pyc File 32.17 KB 0644
_compat_pickle.cpython-310.opt-1.pyc File 5.7 KB 0644
_compat_pickle.cpython-310.opt-2.pyc File 5.7 KB 0644
_compat_pickle.cpython-310.pyc File 5.75 KB 0644
_compression.cpython-310.opt-1.pyc File 4.42 KB 0644
_compression.cpython-310.opt-2.pyc File 4.23 KB 0644
_compression.cpython-310.pyc File 4.42 KB 0644
_markupbase.cpython-310.opt-1.pyc File 7.27 KB 0644
_markupbase.cpython-310.opt-2.pyc File 6.91 KB 0644
_markupbase.cpython-310.pyc File 7.41 KB 0644
_osx_support.cpython-310.opt-1.pyc File 11.28 KB 0644
_osx_support.cpython-310.opt-2.pyc File 8.73 KB 0644
_osx_support.cpython-310.pyc File 11.28 KB 0644
_py_abc.cpython-310.opt-1.pyc File 4.57 KB 0644
_py_abc.cpython-310.opt-2.pyc File 3.41 KB 0644
_py_abc.cpython-310.pyc File 4.59 KB 0644
_pydecimal.cpython-310.opt-1.pyc File 154.05 KB 0644
_pydecimal.cpython-310.opt-2.pyc File 75.06 KB 0644
_pydecimal.cpython-310.pyc File 154.05 KB 0644
_pyio.cpython-310.opt-1.pyc File 71.93 KB 0644
_pyio.cpython-310.opt-2.pyc File 49.76 KB 0644
_pyio.cpython-310.pyc File 71.94 KB 0644
_sitebuiltins.cpython-310.opt-1.pyc File 3.48 KB 0644
_sitebuiltins.cpython-310.opt-2.pyc File 2.98 KB 0644
_sitebuiltins.cpython-310.pyc File 3.48 KB 0644
_strptime.cpython-310.opt-1.pyc File 15.59 KB 0644
_strptime.cpython-310.opt-2.pyc File 12 KB 0644
_strptime.cpython-310.pyc File 15.59 KB 0644
_sysconfigdata__linux_x86_64-linux-gnu.cpython-310.opt-1.pyc File 43.94 KB 0644
_sysconfigdata__linux_x86_64-linux-gnu.cpython-310.opt-2.pyc File 43.94 KB 0644
_sysconfigdata__linux_x86_64-linux-gnu.cpython-310.pyc File 43.94 KB 0644
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-310.opt-1.pyc File 43.53 KB 0644
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-310.opt-2.pyc File 43.53 KB 0644
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-310.pyc File 43.53 KB 0644
_threading_local.cpython-310.opt-1.pyc File 6.4 KB 0644
_threading_local.cpython-310.opt-2.pyc File 3.18 KB 0644
_threading_local.cpython-310.pyc File 6.4 KB 0644
_weakrefset.cpython-310.opt-1.pyc File 7.45 KB 0644
_weakrefset.cpython-310.opt-2.pyc File 7.45 KB 0644
_weakrefset.cpython-310.pyc File 7.45 KB 0644
abc.cpython-310.opt-1.pyc File 6.61 KB 0644
abc.cpython-310.opt-2.pyc File 3.5 KB 0644
abc.cpython-310.pyc File 6.61 KB 0644
aifc.cpython-310.opt-1.pyc File 24.12 KB 0644
aifc.cpython-310.opt-2.pyc File 19.04 KB 0644
aifc.cpython-310.pyc File 24.12 KB 0644
antigravity.cpython-310.opt-1.pyc File 838 B 0644
antigravity.cpython-310.opt-2.pyc File 698 B 0644
antigravity.cpython-310.pyc File 838 B 0644
argparse.cpython-310.opt-1.pyc File 61.65 KB 0644
argparse.cpython-310.opt-2.pyc File 52.54 KB 0644
argparse.cpython-310.pyc File 61.76 KB 0644
ast.cpython-310.opt-1.pyc File 54.4 KB 0644
ast.cpython-310.opt-2.pyc File 46.24 KB 0644
ast.cpython-310.pyc File 54.45 KB 0644
asynchat.cpython-310.opt-1.pyc File 6.88 KB 0644
asynchat.cpython-310.opt-2.pyc File 5.56 KB 0644
asynchat.cpython-310.pyc File 6.88 KB 0644
asyncore.cpython-310.opt-1.pyc File 15.64 KB 0644
asyncore.cpython-310.opt-2.pyc File 14.47 KB 0644
asyncore.cpython-310.pyc File 15.64 KB 0644
base64.cpython-310.opt-1.pyc File 16.65 KB 0644
base64.cpython-310.opt-2.pyc File 12.25 KB 0644
base64.cpython-310.pyc File 16.78 KB 0644
bdb.cpython-310.opt-1.pyc File 25.24 KB 0644
bdb.cpython-310.opt-2.pyc File 16 KB 0644
bdb.cpython-310.pyc File 25.24 KB 0644
binhex.cpython-310.opt-1.pyc File 12.58 KB 0644
binhex.cpython-310.opt-2.pyc File 12.1 KB 0644
binhex.cpython-310.pyc File 12.58 KB 0644
bisect.cpython-310.opt-1.pyc File 2.54 KB 0644
bisect.cpython-310.opt-2.pyc File 1.27 KB 0644
bisect.cpython-310.pyc File 2.54 KB 0644
bz2.cpython-310.opt-1.pyc File 10.63 KB 0644
bz2.cpython-310.opt-2.pyc File 5.81 KB 0644
bz2.cpython-310.pyc File 10.63 KB 0644
cProfile.cpython-310.opt-1.pyc File 5.01 KB 0644
cProfile.cpython-310.opt-2.pyc File 4.57 KB 0644
cProfile.cpython-310.pyc File 5.01 KB 0644
calendar.cpython-310.opt-1.pyc File 25.7 KB 0644
calendar.cpython-310.opt-2.pyc File 21.39 KB 0644
calendar.cpython-310.pyc File 25.7 KB 0644
cgi.cpython-310.opt-1.pyc File 26.11 KB 0644
cgi.cpython-310.opt-2.pyc File 18.04 KB 0644
cgi.cpython-310.pyc File 26.11 KB 0644
cgitb.cpython-310.opt-1.pyc File 9.78 KB 0644
cgitb.cpython-310.opt-2.pyc File 8.25 KB 0644
cgitb.cpython-310.pyc File 9.78 KB 0644
chunk.cpython-310.opt-1.pyc File 4.76 KB 0644
chunk.cpython-310.opt-2.pyc File 2.69 KB 0644
chunk.cpython-310.pyc File 4.76 KB 0644
cmd.cpython-310.opt-1.pyc File 12.42 KB 0644
cmd.cpython-310.opt-2.pyc File 7.18 KB 0644
cmd.cpython-310.pyc File 12.42 KB 0644
code.cpython-310.opt-1.pyc File 9.74 KB 0644
code.cpython-310.opt-2.pyc File 4.65 KB 0644
code.cpython-310.pyc File 9.74 KB 0644
codecs.cpython-310.opt-1.pyc File 32.46 KB 0644
codecs.cpython-310.opt-2.pyc File 17.38 KB 0644
codecs.cpython-310.pyc File 32.46 KB 0644
codeop.cpython-310.opt-1.pyc File 5.48 KB 0644
codeop.cpython-310.opt-2.pyc File 2.56 KB 0644
codeop.cpython-310.pyc File 5.48 KB 0644
colorsys.cpython-310.opt-1.pyc File 3.2 KB 0644
colorsys.cpython-310.opt-2.pyc File 2.62 KB 0644
colorsys.cpython-310.pyc File 3.2 KB 0644
compileall.cpython-310.opt-1.pyc File 12.45 KB 0644
compileall.cpython-310.opt-2.pyc File 9.29 KB 0644
compileall.cpython-310.pyc File 12.45 KB 0644
configparser.cpython-310.opt-1.pyc File 44.41 KB 0644
configparser.cpython-310.opt-2.pyc File 29.83 KB 0644
configparser.cpython-310.pyc File 44.41 KB 0644
contextlib.cpython-310.opt-1.pyc File 20.41 KB 0644
contextlib.cpython-310.opt-2.pyc File 14.56 KB 0644
contextlib.cpython-310.pyc File 20.42 KB 0644
contextvars.cpython-310.opt-1.pyc File 262 B 0644
contextvars.cpython-310.opt-2.pyc File 262 B 0644
contextvars.cpython-310.pyc File 262 B 0644
copy.cpython-310.opt-1.pyc File 6.85 KB 0644
copy.cpython-310.opt-2.pyc File 4.61 KB 0644
copy.cpython-310.pyc File 6.85 KB 0644
copyreg.cpython-310.opt-1.pyc File 4.57 KB 0644
copyreg.cpython-310.opt-2.pyc File 3.81 KB 0644
copyreg.cpython-310.pyc File 4.59 KB 0644
crypt.cpython-310.opt-1.pyc File 3.48 KB 0644
crypt.cpython-310.opt-2.pyc File 2.85 KB 0644
crypt.cpython-310.pyc File 3.48 KB 0644
csv.cpython-310.opt-1.pyc File 11.54 KB 0644
csv.cpython-310.opt-2.pyc File 9.58 KB 0644
csv.cpython-310.pyc File 11.54 KB 0644
dataclasses.cpython-310.opt-1.pyc File 25.96 KB 0644
dataclasses.cpython-310.opt-2.pyc File 22.36 KB 0644
dataclasses.cpython-310.pyc File 25.97 KB 0644
datetime.cpython-310.opt-1.pyc File 54.05 KB 0644
datetime.cpython-310.opt-2.pyc File 46.12 KB 0644
datetime.cpython-310.pyc File 55.22 KB 0644
decimal.cpython-310.opt-1.pyc File 378 B 0644
decimal.cpython-310.opt-2.pyc File 378 B 0644
decimal.cpython-310.pyc File 378 B 0644
difflib.cpython-310.opt-1.pyc File 57.52 KB 0644
difflib.cpython-310.opt-2.pyc File 24.95 KB 0644
difflib.cpython-310.pyc File 57.54 KB 0644
dis.cpython-310.opt-1.pyc File 15.3 KB 0644
dis.cpython-310.opt-2.pyc File 11.72 KB 0644
dis.cpython-310.pyc File 15.3 KB 0644
doctest.cpython-310.opt-1.pyc File 74.21 KB 0644
doctest.cpython-310.opt-2.pyc File 39.9 KB 0644
doctest.cpython-310.pyc File 74.41 KB 0644
enum.cpython-310.opt-1.pyc File 25.47 KB 0644
enum.cpython-310.opt-2.pyc File 20.82 KB 0644
enum.cpython-310.pyc File 25.47 KB 0644
filecmp.cpython-310.opt-1.pyc File 8.56 KB 0644
filecmp.cpython-310.opt-2.pyc File 6.01 KB 0644
filecmp.cpython-310.pyc File 8.56 KB 0644
fileinput.cpython-310.opt-1.pyc File 13.76 KB 0644
fileinput.cpython-310.opt-2.pyc File 8.4 KB 0644
fileinput.cpython-310.pyc File 13.76 KB 0644
fnmatch.cpython-310.opt-1.pyc File 4.09 KB 0644
fnmatch.cpython-310.opt-2.pyc File 2.93 KB 0644
fnmatch.cpython-310.pyc File 4.16 KB 0644
fractions.cpython-310.opt-1.pyc File 18.18 KB 0644
fractions.cpython-310.opt-2.pyc File 11.23 KB 0644
fractions.cpython-310.pyc File 18.18 KB 0644
ftplib.cpython-310.opt-1.pyc File 28.31 KB 0644
ftplib.cpython-310.opt-2.pyc File 18.58 KB 0644
ftplib.cpython-310.pyc File 28.31 KB 0644
functools.cpython-310.opt-1.pyc File 27.69 KB 0644
functools.cpython-310.opt-2.pyc File 21.22 KB 0644
functools.cpython-310.pyc File 27.69 KB 0644
genericpath.cpython-310.opt-1.pyc File 3.83 KB 0644
genericpath.cpython-310.opt-2.pyc File 2.75 KB 0644
genericpath.cpython-310.pyc File 3.83 KB 0644
getopt.cpython-310.opt-1.pyc File 6.19 KB 0644
getopt.cpython-310.opt-2.pyc File 3.71 KB 0644
getopt.cpython-310.pyc File 6.21 KB 0644
getpass.cpython-310.opt-1.pyc File 4.13 KB 0644
getpass.cpython-310.opt-2.pyc File 2.98 KB 0644
getpass.cpython-310.pyc File 4.13 KB 0644
gettext.cpython-310.opt-1.pyc File 17.7 KB 0644
gettext.cpython-310.opt-2.pyc File 17.04 KB 0644
gettext.cpython-310.pyc File 17.7 KB 0644
glob.cpython-310.opt-1.pyc File 5.7 KB 0644
glob.cpython-310.opt-2.pyc File 4.88 KB 0644
glob.cpython-310.pyc File 5.73 KB 0644
graphlib.cpython-310.opt-1.pyc File 7.41 KB 0644
graphlib.cpython-310.opt-2.pyc File 4.09 KB 0644
graphlib.cpython-310.pyc File 7.45 KB 0644
gzip.cpython-310.opt-1.pyc File 18.13 KB 0644
gzip.cpython-310.opt-2.pyc File 14.4 KB 0644
gzip.cpython-310.pyc File 18.13 KB 0644
hashlib.cpython-310.opt-1.pyc File 6.7 KB 0644
hashlib.cpython-310.opt-2.pyc File 6.16 KB 0644
hashlib.cpython-310.pyc File 6.7 KB 0644
heapq.cpython-310.opt-1.pyc File 13.56 KB 0644
heapq.cpython-310.opt-2.pyc File 10.66 KB 0644
heapq.cpython-310.pyc File 13.56 KB 0644
hmac.cpython-310.opt-1.pyc File 6.83 KB 0644
hmac.cpython-310.opt-2.pyc File 4.4 KB 0644
hmac.cpython-310.pyc File 6.83 KB 0644
imaplib.cpython-310.opt-1.pyc File 40.61 KB 0644
imaplib.cpython-310.opt-2.pyc File 28.44 KB 0644
imaplib.cpython-310.pyc File 41.34 KB 0644
imghdr.cpython-310.opt-1.pyc File 3.83 KB 0644
imghdr.cpython-310.opt-2.pyc File 3.54 KB 0644
imghdr.cpython-310.pyc File 3.83 KB 0644
imp.cpython-310.opt-1.pyc File 9.57 KB 0644
imp.cpython-310.opt-2.pyc File 7.33 KB 0644
imp.cpython-310.pyc File 9.57 KB 0644
inspect.cpython-310.opt-1.pyc File 82.96 KB 0644
inspect.cpython-310.opt-2.pyc File 56.69 KB 0644
inspect.cpython-310.pyc File 83.17 KB 0644
io.cpython-310.opt-1.pyc File 3.59 KB 0644
io.cpython-310.opt-2.pyc File 2.14 KB 0644
io.cpython-310.pyc File 3.59 KB 0644
ipaddress.cpython-310.opt-1.pyc File 61.22 KB 0644
ipaddress.cpython-310.opt-2.pyc File 36.57 KB 0644
ipaddress.cpython-310.pyc File 61.22 KB 0644
keyword.cpython-310.opt-1.pyc File 943 B 0644
keyword.cpython-310.opt-2.pyc File 539 B 0644
keyword.cpython-310.pyc File 943 B 0644
linecache.cpython-310.opt-1.pyc File 4.06 KB 0644
linecache.cpython-310.opt-2.pyc File 2.89 KB 0644
linecache.cpython-310.pyc File 4.06 KB 0644
locale.cpython-310.opt-1.pyc File 45.1 KB 0644
locale.cpython-310.opt-2.pyc File 40.72 KB 0644
locale.cpython-310.pyc File 45.1 KB 0644
lzma.cpython-310.opt-1.pyc File 11.83 KB 0644
lzma.cpython-310.opt-2.pyc File 5.84 KB 0644
lzma.cpython-310.pyc File 11.83 KB 0644
mailbox.cpython-310.opt-1.pyc File 58.65 KB 0644
mailbox.cpython-310.opt-2.pyc File 52.81 KB 0644
mailbox.cpython-310.pyc File 58.7 KB 0644
mailcap.cpython-310.opt-1.pyc File 7.16 KB 0644
mailcap.cpython-310.opt-2.pyc File 5.66 KB 0644
mailcap.cpython-310.pyc File 7.16 KB 0644
mimetypes.cpython-310.opt-1.pyc File 17.22 KB 0644
mimetypes.cpython-310.opt-2.pyc File 11.39 KB 0644
mimetypes.cpython-310.pyc File 17.22 KB 0644
modulefinder.cpython-310.opt-1.pyc File 15.76 KB 0644
modulefinder.cpython-310.opt-2.pyc File 14.89 KB 0644
modulefinder.cpython-310.pyc File 15.8 KB 0644
netrc.cpython-310.opt-1.pyc File 3.86 KB 0644
netrc.cpython-310.opt-2.pyc File 3.64 KB 0644
netrc.cpython-310.pyc File 3.86 KB 0644
nntplib.cpython-310.opt-1.pyc File 30.9 KB 0644
nntplib.cpython-310.opt-2.pyc File 19.77 KB 0644
nntplib.cpython-310.pyc File 30.9 KB 0644
ntpath.cpython-310.opt-1.pyc File 14.96 KB 0644
ntpath.cpython-310.opt-2.pyc File 13.01 KB 0644
ntpath.cpython-310.pyc File 14.96 KB 0644
nturl2path.cpython-310.opt-1.pyc File 1.72 KB 0644
nturl2path.cpython-310.opt-2.pyc File 1.32 KB 0644
nturl2path.cpython-310.pyc File 1.72 KB 0644
numbers.cpython-310.opt-1.pyc File 11.6 KB 0644
numbers.cpython-310.opt-2.pyc File 7.86 KB 0644
numbers.cpython-310.pyc File 11.6 KB 0644
opcode.cpython-310.opt-1.pyc File 5.33 KB 0644
opcode.cpython-310.opt-2.pyc File 5.2 KB 0644
opcode.cpython-310.pyc File 5.33 KB 0644
operator.cpython-310.opt-1.pyc File 13.21 KB 0644
operator.cpython-310.opt-2.pyc File 11.01 KB 0644
operator.cpython-310.pyc File 13.21 KB 0644
optparse.cpython-310.opt-1.pyc File 46.6 KB 0644
optparse.cpython-310.opt-2.pyc File 34.69 KB 0644
optparse.cpython-310.pyc File 46.65 KB 0644
os.cpython-310.opt-1.pyc File 30.86 KB 0644
os.cpython-310.opt-2.pyc File 19 KB 0644
os.cpython-310.pyc File 30.87 KB 0644
pathlib.cpython-310.opt-1.pyc File 41.08 KB 0644
pathlib.cpython-310.opt-2.pyc File 32.53 KB 0644
pathlib.cpython-310.pyc File 41.08 KB 0644
pdb.cpython-310.opt-1.pyc File 46.3 KB 0644
pdb.cpython-310.opt-2.pyc File 32.78 KB 0644
pdb.cpython-310.pyc File 46.34 KB 0644
pickle.cpython-310.opt-1.pyc File 45.71 KB 0644
pickle.cpython-310.opt-2.pyc File 40.04 KB 0644
pickle.cpython-310.pyc File 45.8 KB 0644
pickletools.cpython-310.opt-1.pyc File 65.41 KB 0644
pickletools.cpython-310.opt-2.pyc File 56.63 KB 0644
pickletools.cpython-310.pyc File 66.19 KB 0644
pipes.cpython-310.opt-1.pyc File 7.6 KB 0644
pipes.cpython-310.opt-2.pyc File 4.84 KB 0644
pipes.cpython-310.pyc File 7.6 KB 0644
pkgutil.cpython-310.opt-1.pyc File 17.95 KB 0644
pkgutil.cpython-310.opt-2.pyc File 11.45 KB 0644
pkgutil.cpython-310.pyc File 17.95 KB 0644
platform.cpython-310.opt-1.pyc File 26.8 KB 0644
platform.cpython-310.opt-2.pyc File 18.94 KB 0644
platform.cpython-310.pyc File 26.8 KB 0644
plistlib.cpython-310.opt-1.pyc File 22.97 KB 0644
plistlib.cpython-310.opt-2.pyc File 20.59 KB 0644
plistlib.cpython-310.pyc File 23.02 KB 0644
poplib.cpython-310.opt-1.pyc File 13.27 KB 0644
poplib.cpython-310.opt-2.pyc File 8.52 KB 0644
poplib.cpython-310.pyc File 13.27 KB 0644
posixpath.cpython-310.opt-1.pyc File 10.3 KB 0644
posixpath.cpython-310.opt-2.pyc File 8.7 KB 0644
posixpath.cpython-310.pyc File 10.3 KB 0644
pprint.cpython-310.opt-1.pyc File 17.44 KB 0644
pprint.cpython-310.opt-2.pyc File 15.36 KB 0644
pprint.cpython-310.pyc File 17.47 KB 0644
profile.cpython-310.opt-1.pyc File 13.89 KB 0644
profile.cpython-310.opt-2.pyc File 11 KB 0644
profile.cpython-310.pyc File 14.07 KB 0644
pstats.cpython-310.opt-1.pyc File 23.08 KB 0644
pstats.cpython-310.opt-2.pyc File 20.28 KB 0644
pstats.cpython-310.pyc File 23.08 KB 0644
pty.cpython-310.opt-1.pyc File 4.06 KB 0644
pty.cpython-310.opt-2.pyc File 3.27 KB 0644
pty.cpython-310.pyc File 4.06 KB 0644
py_compile.cpython-310.opt-1.pyc File 7.19 KB 0644
py_compile.cpython-310.opt-2.pyc File 3.96 KB 0644
py_compile.cpython-310.pyc File 7.19 KB 0644
pyclbr.cpython-310.opt-1.pyc File 9.56 KB 0644
pyclbr.cpython-310.opt-2.pyc File 6.61 KB 0644
pyclbr.cpython-310.pyc File 9.56 KB 0644
pydoc.cpython-310.opt-1.pyc File 83.36 KB 0644
pydoc.cpython-310.opt-2.pyc File 74.07 KB 0644
pydoc.cpython-310.pyc File 83.39 KB 0644
queue.cpython-310.opt-1.pyc File 10.55 KB 0644
queue.cpython-310.opt-2.pyc File 6.4 KB 0644
queue.cpython-310.pyc File 10.55 KB 0644
quopri.cpython-310.opt-1.pyc File 5.54 KB 0644
quopri.cpython-310.opt-2.pyc File 4.55 KB 0644
quopri.cpython-310.pyc File 5.67 KB 0644
random.cpython-310.opt-1.pyc File 22.23 KB 0644
random.cpython-310.opt-2.pyc File 15.09 KB 0644
random.cpython-310.pyc File 22.23 KB 0644
re.cpython-310.opt-1.pyc File 13.91 KB 0644
re.cpython-310.opt-2.pyc File 5.8 KB 0644
re.cpython-310.pyc File 13.91 KB 0644
reprlib.cpython-310.opt-1.pyc File 5.14 KB 0644
reprlib.cpython-310.opt-2.pyc File 5 KB 0644
reprlib.cpython-310.pyc File 5.14 KB 0644
rlcompleter.cpython-310.opt-1.pyc File 5.83 KB 0644
rlcompleter.cpython-310.opt-2.pyc File 3.25 KB 0644
rlcompleter.cpython-310.pyc File 5.83 KB 0644
runpy.cpython-310.opt-1.pyc File 9.21 KB 0644
runpy.cpython-310.opt-2.pyc File 6.85 KB 0644
runpy.cpython-310.pyc File 9.21 KB 0644
sched.cpython-310.opt-1.pyc File 5.99 KB 0644
sched.cpython-310.opt-2.pyc File 3.06 KB 0644
sched.cpython-310.pyc File 5.99 KB 0644
secrets.cpython-310.opt-1.pyc File 2.14 KB 0644
secrets.cpython-310.opt-2.pyc File 1.13 KB 0644
secrets.cpython-310.pyc File 2.14 KB 0644
selectors.cpython-310.opt-1.pyc File 16.72 KB 0644
selectors.cpython-310.opt-2.pyc File 12.79 KB 0644
selectors.cpython-310.pyc File 16.72 KB 0644
shelve.cpython-310.opt-1.pyc File 9.29 KB 0644
shelve.cpython-310.opt-2.pyc File 5.25 KB 0644
shelve.cpython-310.pyc File 9.29 KB 0644
shlex.cpython-310.opt-1.pyc File 7.62 KB 0644
shlex.cpython-310.opt-2.pyc File 7.11 KB 0644
shlex.cpython-310.pyc File 7.62 KB 0644
shutil.cpython-310.opt-1.pyc File 37.65 KB 0644
shutil.cpython-310.opt-2.pyc File 26 KB 0644
shutil.cpython-310.pyc File 37.65 KB 0644
signal.cpython-310.opt-1.pyc File 2.88 KB 0644
signal.cpython-310.opt-2.pyc File 2.67 KB 0644
signal.cpython-310.pyc File 2.88 KB 0644
site.cpython-310.opt-1.pyc File 17.25 KB 0644
site.cpython-310.opt-2.pyc File 11.9 KB 0644
site.cpython-310.pyc File 17.25 KB 0644
smtpd.cpython-310.opt-1.pyc File 25.55 KB 0644
smtpd.cpython-310.opt-2.pyc File 23.01 KB 0644
smtpd.cpython-310.pyc File 25.55 KB 0644
smtplib.cpython-310.opt-1.pyc File 34.9 KB 0644
smtplib.cpython-310.opt-2.pyc File 19.1 KB 0644
smtplib.cpython-310.pyc File 34.94 KB 0644
sndhdr.cpython-310.opt-1.pyc File 6.81 KB 0644
sndhdr.cpython-310.opt-2.pyc File 5.58 KB 0644
sndhdr.cpython-310.pyc File 6.81 KB 0644
socket.cpython-310.opt-1.pyc File 28.09 KB 0644
socket.cpython-310.opt-2.pyc File 19.86 KB 0644
socket.cpython-310.pyc File 28.12 KB 0644
socketserver.cpython-310.opt-1.pyc File 24.77 KB 0644
socketserver.cpython-310.opt-2.pyc File 14.47 KB 0644
socketserver.cpython-310.pyc File 24.77 KB 0644
sre_compile.cpython-310.opt-1.pyc File 14.67 KB 0644
sre_compile.cpython-310.opt-2.pyc File 14.27 KB 0644
sre_compile.cpython-310.pyc File 14.85 KB 0644
sre_constants.cpython-310.opt-1.pyc File 6.22 KB 0644
sre_constants.cpython-310.opt-2.pyc File 5.82 KB 0644
sre_constants.cpython-310.pyc File 6.22 KB 0644
sre_parse.cpython-310.opt-1.pyc File 21.23 KB 0644
sre_parse.cpython-310.opt-2.pyc File 21.18 KB 0644
sre_parse.cpython-310.pyc File 21.26 KB 0644
ssl.cpython-310.opt-1.pyc File 44.24 KB 0644
ssl.cpython-310.opt-2.pyc File 33.61 KB 0644
ssl.cpython-310.pyc File 44.24 KB 0644
stat.cpython-310.opt-1.pyc File 4.19 KB 0644
stat.cpython-310.opt-2.pyc File 3.44 KB 0644
stat.cpython-310.pyc File 4.19 KB 0644
statistics.cpython-310.opt-1.pyc File 36.09 KB 0644
statistics.cpython-310.opt-2.pyc File 18.28 KB 0644
statistics.cpython-310.pyc File 36.2 KB 0644
string.cpython-310.opt-1.pyc File 6.95 KB 0644
string.cpython-310.opt-2.pyc File 5.88 KB 0644
string.cpython-310.pyc File 6.95 KB 0644
stringprep.cpython-310.opt-1.pyc File 16.65 KB 0644
stringprep.cpython-310.opt-2.pyc File 16.44 KB 0644
stringprep.cpython-310.pyc File 16.69 KB 0644
struct.cpython-310.opt-1.pyc File 323 B 0644
struct.cpython-310.opt-2.pyc File 323 B 0644
struct.cpython-310.pyc File 323 B 0644
subprocess.cpython-310.opt-1.pyc File 43.64 KB 0644
subprocess.cpython-310.opt-2.pyc File 32 KB 0644
subprocess.cpython-310.pyc File 43.71 KB 0644
sunau.cpython-310.opt-1.pyc File 16.11 KB 0644
sunau.cpython-310.opt-2.pyc File 11.63 KB 0644
sunau.cpython-310.pyc File 16.11 KB 0644
symtable.cpython-310.opt-1.pyc File 12.47 KB 0644
symtable.cpython-310.opt-2.pyc File 9.98 KB 0644
symtable.cpython-310.pyc File 12.55 KB 0644
sysconfig.cpython-310.opt-1.pyc File 17.08 KB 0644
sysconfig.cpython-310.opt-2.pyc File 14.41 KB 0644
sysconfig.cpython-310.pyc File 17.08 KB 0644
tabnanny.cpython-310.opt-1.pyc File 6.8 KB 0644
tabnanny.cpython-310.opt-2.pyc File 5.9 KB 0644
tabnanny.cpython-310.pyc File 6.8 KB 0644
tarfile.cpython-310.opt-1.pyc File 69.03 KB 0644
tarfile.cpython-310.opt-2.pyc File 55.04 KB 0644
tarfile.cpython-310.pyc File 69.04 KB 0644
telnetlib.cpython-310.opt-1.pyc File 18.09 KB 0644
telnetlib.cpython-310.opt-2.pyc File 10.87 KB 0644
telnetlib.cpython-310.pyc File 18.09 KB 0644
tempfile.cpython-310.opt-1.pyc File 23.76 KB 0644
tempfile.cpython-310.opt-2.pyc File 17.43 KB 0644
tempfile.cpython-310.pyc File 23.76 KB 0644
textwrap.cpython-310.opt-1.pyc File 13.48 KB 0644
textwrap.cpython-310.opt-2.pyc File 6.49 KB 0644
textwrap.cpython-310.pyc File 13.5 KB 0644
this.cpython-310.opt-1.pyc File 1.25 KB 0644
this.cpython-310.opt-2.pyc File 1.25 KB 0644
this.cpython-310.pyc File 1.25 KB 0644
threading.cpython-310.opt-1.pyc File 43.49 KB 0644
threading.cpython-310.opt-2.pyc File 25.83 KB 0644
threading.cpython-310.pyc File 43.9 KB 0644
timeit.cpython-310.opt-1.pyc File 11.51 KB 0644
timeit.cpython-310.opt-2.pyc File 5.84 KB 0644
timeit.cpython-310.pyc File 11.51 KB 0644
token.cpython-310.opt-1.pyc File 2.69 KB 0644
token.cpython-310.opt-2.pyc File 2.66 KB 0644
token.cpython-310.pyc File 2.69 KB 0644
tokenize.cpython-310.opt-1.pyc File 16.78 KB 0644
tokenize.cpython-310.opt-2.pyc File 13.13 KB 0644
tokenize.cpython-310.pyc File 16.81 KB 0644
trace.cpython-310.opt-1.pyc File 19.42 KB 0644
trace.cpython-310.opt-2.pyc File 16.58 KB 0644
trace.cpython-310.pyc File 19.42 KB 0644
traceback.cpython-310.opt-1.pyc File 21.22 KB 0644
traceback.cpython-310.opt-2.pyc File 12.44 KB 0644
traceback.cpython-310.pyc File 21.22 KB 0644
tracemalloc.cpython-310.opt-1.pyc File 17.13 KB 0644
tracemalloc.cpython-310.opt-2.pyc File 15.8 KB 0644
tracemalloc.cpython-310.pyc File 17.13 KB 0644
tty.cpython-310.opt-1.pyc File 1.07 KB 0644
tty.cpython-310.opt-2.pyc File 998 B 0644
tty.cpython-310.pyc File 1.07 KB 0644
types.cpython-310.opt-1.pyc File 9.32 KB 0644
types.cpython-310.opt-2.pyc File 7.95 KB 0644
types.cpython-310.pyc File 9.32 KB 0644
typing.cpython-310.opt-1.pyc File 83.15 KB 0644
typing.cpython-310.opt-2.pyc File 57.34 KB 0644
typing.cpython-310.pyc File 83.29 KB 0644
uu.cpython-310.opt-1.pyc File 3.79 KB 0644
uu.cpython-310.opt-2.pyc File 3.57 KB 0644
uu.cpython-310.pyc File 3.79 KB 0644
uuid.cpython-310.opt-1.pyc File 21.88 KB 0644
uuid.cpython-310.opt-2.pyc File 14.43 KB 0644
uuid.cpython-310.pyc File 21.99 KB 0644
warnings.cpython-310.opt-1.pyc File 12.91 KB 0644
warnings.cpython-310.opt-2.pyc File 10.75 KB 0644
warnings.cpython-310.pyc File 13.34 KB 0644
wave.cpython-310.opt-1.pyc File 17.17 KB 0644
wave.cpython-310.opt-2.pyc File 11.33 KB 0644
wave.cpython-310.pyc File 17.2 KB 0644
weakref.cpython-310.opt-1.pyc File 19.87 KB 0644
weakref.cpython-310.opt-2.pyc File 16.71 KB 0644
weakref.cpython-310.pyc File 19.88 KB 0644
webbrowser.cpython-310.opt-1.pyc File 16.6 KB 0644
webbrowser.cpython-310.opt-2.pyc File 14.32 KB 0644
webbrowser.cpython-310.pyc File 16.62 KB 0644
xdrlib.cpython-310.opt-1.pyc File 7.71 KB 0644
xdrlib.cpython-310.opt-2.pyc File 7.26 KB 0644
xdrlib.cpython-310.pyc File 7.71 KB 0644
zipapp.cpython-310.opt-1.pyc File 5.89 KB 0644
zipapp.cpython-310.opt-2.pyc File 4.75 KB 0644
zipapp.cpython-310.pyc File 5.89 KB 0644
zipfile.cpython-310.opt-1.pyc File 60.1 KB 0644
zipfile.cpython-310.opt-2.pyc File 50.71 KB 0644
zipfile.cpython-310.pyc File 60.12 KB 0644
zipimport.cpython-310.opt-1.pyc File 16.59 KB 0644
zipimport.cpython-310.opt-2.pyc File 12.97 KB 0644
zipimport.cpython-310.pyc File 16.65 KB 0644