404

[ Avaa Bypassed ]




Upload:

Command:

elspacio@18.191.218.101: ~ $
"""Random variable generators.

    integers
    --------
           uniform within range

    sequences
    ---------
           pick random element
           pick random sample
           generate random permutation

    distributions on the real line:
    ------------------------------
           uniform
           triangular
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

General notes on the underlying Mersenne Twister core generator:

* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* Without a direct way to compute N steps forward, the semantics of
  jumpahead(n) are weakened to simply jump to another distant state and rely
  on the large period to avoid overlapping sequences.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.

"""

from __future__ import division
from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from binascii import hexlify as _hexlify
import hashlib as _hashlib

__all__ = ["Random","seed","random","uniform","randint","choice","sample",
           "randrange","shuffle","normalvariate","lognormvariate",
           "expovariate","vonmisesvariate","gammavariate","triangular",
           "gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
           "SystemRandom"]

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53        # Number of bits in a float
RECIP_BPF = 2**-BPF


# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
# the Mersenne Twister  and os.urandom() core generators.

import _random

class Random(_random.Random):
    """Random number generator base class used by bound module functions.

    Used to instantiate instances of Random to get generators that don't
    share state.  Especially useful for multi-threaded programs, creating
    a different instance of Random for each thread, and using the jumpahead()
    method to ensure that the generated sequences seen by each thread don't
    overlap.

    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods: random(), seed(), getstate(), setstate() and jumpahead().
    Optionally, implement a getrandbits() method so that randrange() can cover
    arbitrarily large ranges.

    """

    VERSION = 3     # used by getstate/setstate

    def __init__(self, x=None):
        """Initialize an instance.

        Optional argument x controls seeding, as for Random.seed().
        """

        self.seed(x)
        self.gauss_next = None

    def seed(self, a=None):
        """Initialize internal state of the random number generator.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        If a is not None or is an int or long, hash(a) is used instead.
        Hash values for some types are nondeterministic when the
        PYTHONHASHSEED environment variable is enabled.
        """

        if a is None:
            try:
                # Seed with enough bytes to span the 19937 bit
                # state space for the Mersenne Twister
                a = long(_hexlify(_urandom(2500)), 16)
            except NotImplementedError:
                import time
                a = long(time.time() * 256) # use fractional seconds

        super(Random, self).seed(a)
        self.gauss_next = None

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, super(Random, self).getstate(), self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 3:
            version, internalstate, self.gauss_next = state
            super(Random, self).setstate(internalstate)
        elif version == 2:
            version, internalstate, self.gauss_next = state
            # In version 2, the state was saved as signed ints, which causes
            #   inconsistencies between 32/64-bit systems. The state is
            #   really unsigned 32-bit ints, so we convert negative ints from
            #   version 2 to positive longs for version 3.
            try:
                internalstate = tuple( long(x) % (2**32) for x in internalstate )
            except ValueError, e:
                raise TypeError, e
            super(Random, self).setstate(internalstate)
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

    def jumpahead(self, n):
        """Change the internal state to one that is likely far away
        from the current state.  This method will not be in Py3.x,
        so it is better to simply reseed.
        """
        # The super.jumpahead() method uses shuffling to change state,
        # so it needs a large and "interesting" n to work with.  Here,
        # we use hashing to create a large n for the shuffle.
        s = repr(n) + repr(self.getstate())
        n = int(_hashlib.new('sha512', s).hexdigest(), 16)
        super(Random, self).jumpahead(n)

## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.

## -------------------- pickle support  -------------------

    def __getstate__(self): # for pickle
        return self.getstate()

    def __setstate__(self, state):  # for pickle
        self.setstate(state)

    def __reduce__(self):
        return self.__class__, (), self.getstate()

## -------------------- integer methods  -------------------

    def randrange(self, start, stop=None, step=1, _int=int, _maxwidth=1L<<BPF):
        """Choose a random item from range(start, stop[, step]).

        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.

        """

        # This code is a bit messy to make it fast for the
        # common case while still doing adequate error checking.
        istart = _int(start)
        if istart != start:
            raise ValueError, "non-integer arg 1 for randrange()"
        if stop is None:
            if istart > 0:
                if istart >= _maxwidth:
                    return self._randbelow(istart)
                return _int(self.random() * istart)
            raise ValueError, "empty range for randrange()"

        # stop argument supplied.
        istop = _int(stop)
        if istop != stop:
            raise ValueError, "non-integer stop for randrange()"
        width = istop - istart
        if step == 1 and width > 0:
            # Note that
            #     int(istart + self.random()*width)
            # instead would be incorrect.  For example, consider istart
            # = -2 and istop = 0.  Then the guts would be in
            # -2.0 to 0.0 exclusive on both ends (ignoring that random()
            # might return 0.0), and because int() truncates toward 0, the
            # final result would be -1 or 0 (instead of -2 or -1).
            #     istart + int(self.random()*width)
            # would also be incorrect, for a subtler reason:  the RHS
            # can return a long, and then randrange() would also return
            # a long, but we're supposed to return an int (for backward
            # compatibility).

            if width >= _maxwidth:
                return _int(istart + self._randbelow(width))
            return _int(istart + _int(self.random()*width))
        if step == 1:
            raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)

        # Non-unit step argument supplied.
        istep = _int(step)
        if istep != step:
            raise ValueError, "non-integer step for randrange()"
        if istep > 0:
            n = (width + istep - 1) // istep
        elif istep < 0:
            n = (width + istep + 1) // istep
        else:
            raise ValueError, "zero step for randrange()"

        if n <= 0:
            raise ValueError, "empty range for randrange()"

        if n >= _maxwidth:
            return istart + istep*self._randbelow(n)
        return istart + istep*_int(self.random() * n)

    def randint(self, a, b):
        """Return random integer in range [a, b], including both end points.
        """

        return self.randrange(a, b+1)

    def _randbelow(self, n, _log=_log, _int=int, _maxwidth=1L<<BPF,
                   _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
        """Return a random int in the range [0,n)

        Handles the case where n has more bits than returned
        by a single call to the underlying generator.
        """

        try:
            getrandbits = self.getrandbits
        except AttributeError:
            pass
        else:
            # Only call self.getrandbits if the original random() builtin method
            # has not been overridden or if a new getrandbits() was supplied.
            # This assures that the two methods correspond.
            if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
                k = _int(1.00001 + _log(n-1, 2.0))   # 2**k > n-1 > 2**(k-2)
                r = getrandbits(k)
                while r >= n:
                    r = getrandbits(k)
                return r
        if n >= _maxwidth:
            _warn("Underlying random() generator does not supply \n"
                "enough bits to choose from a population range this large")
        return _int(self.random() * n)

## -------------------- sequence methods  -------------------

    def choice(self, seq):
        """Choose a random element from a non-empty sequence."""
        return seq[int(self.random() * len(seq))]  # raises IndexError if seq is empty

    def shuffle(self, x, random=None):
        """x, random=random.random -> shuffle list x in place; return None.

        Optional arg random is a 0-argument function returning a random
        float in [0.0, 1.0); by default, the standard random.random.

        """

        if random is None:
            random = self.random
        _int = int
        for i in reversed(xrange(1, len(x))):
            # pick an element in x[:i+1] with which to exchange x[i]
            j = _int(random() * (i+1))
            x[i], x[j] = x[j], x[i]

    def sample(self, population, k):
        """Chooses k unique random elements from a population sequence.

        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).

        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.

        To choose a sample in a range of integers, use xrange as an argument.
        This is especially fast and space efficient for sampling from a
        large population:   sample(xrange(10000000), 60)
        """

        # Sampling without replacement entails tracking either potential
        # selections (the pool) in a list or previous selections in a set.

        # When the number of selections is small compared to the
        # population, then tracking selections is efficient, requiring
        # only a small set and an occasional reselection.  For
        # a larger number of selections, the pool tracking method is
        # preferred since the list takes less space than the
        # set and it doesn't suffer from frequent reselections.

        n = len(population)
        if not 0 <= k <= n:
            raise ValueError("sample larger than population")
        random = self.random
        _int = int
        result = [None] * k
        setsize = 21        # size of a small set minus size of an empty list
        if k > 5:
            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
        if n <= setsize or hasattr(population, "keys"):
            # An n-length list is smaller than a k-length set, or this is a
            # mapping type so the other algorithm wouldn't work.
            pool = list(population)
            for i in xrange(k):         # invariant:  non-selected at [0,n-i)
                j = _int(random() * (n-i))
                result[i] = pool[j]
                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
        else:
            try:
                selected = set()
                selected_add = selected.add
                for i in xrange(k):
                    j = _int(random() * n)
                    while j in selected:
                        j = _int(random() * n)
                    selected_add(j)
                    result[i] = population[j]
            except (TypeError, KeyError):   # handle (at least) sets
                if isinstance(population, list):
                    raise
                return self.sample(tuple(population), k)
        return result

## -------------------- real-valued distributions  -------------------

## -------------------- uniform distribution -------------------

    def uniform(self, a, b):
        "Get a random number in the range [a, b) or [a, b] depending on rounding."
        return a + (b-a) * self.random()

## -------------------- triangular --------------------

    def triangular(self, low=0.0, high=1.0, mode=None):
        """Triangular distribution.

        Continuous distribution bounded by given lower and upper limits,
        and having a given mode value in-between.

        http://en.wikipedia.org/wiki/Triangular_distribution

        """
        u = self.random()
        try:
            c = 0.5 if mode is None else (mode - low) / (high - low)
        except ZeroDivisionError:
            return low
        if u > c:
            u = 1.0 - u
            c = 1.0 - c
            low, high = high, low
        return low + (high - low) * (u * c) ** 0.5

## -------------------- normal distribution --------------------

    def normalvariate(self, mu, sigma):
        """Normal distribution.

        mu is the mean, and sigma is the standard deviation.

        """
        # mu = mean, sigma = standard deviation

        # Uses Kinderman and Monahan method. Reference: Kinderman,
        # A.J. and Monahan, J.F., "Computer generation of random
        # variables using the ratio of uniform deviates", ACM Trans
        # Math Software, 3, (1977), pp257-260.

        random = self.random
        while 1:
            u1 = random()
            u2 = 1.0 - random()
            z = NV_MAGICCONST*(u1-0.5)/u2
            zz = z*z/4.0
            if zz <= -_log(u2):
                break
        return mu + z*sigma

## -------------------- lognormal distribution --------------------

    def lognormvariate(self, mu, sigma):
        """Log normal distribution.

        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.

        """
        return _exp(self.normalvariate(mu, sigma))

## -------------------- exponential distribution --------------------

    def expovariate(self, lambd):
        """Exponential distribution.

        lambd is 1.0 divided by the desired mean.  It should be
        nonzero.  (The parameter would be called "lambda", but that is
        a reserved word in Python.)  Returned values range from 0 to
        positive infinity if lambd is positive, and from negative
        infinity to 0 if lambd is negative.

        """
        # lambd: rate lambd = 1/mean
        # ('lambda' is a Python reserved word)

        # we use 1-random() instead of random() to preclude the
        # possibility of taking the log of zero.
        return -_log(1.0 - self.random())/lambd

## -------------------- von Mises distribution --------------------

    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)

        while 1:
            u1 = random()
            z = _cos(_pi * u1)

            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI

        return theta

## -------------------- gamma distribution --------------------

    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError, 'gammavariate: alpha and beta must be > 0.0'

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < .9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -_log((b-p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta

## -------------------- Gauss (faster alternative) --------------------

    def gauss(self, mu, sigma):
        """Gaussian distribution.

        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.

        Not thread-safe without a lock around calls.

        """

        # When x and y are two variables from [0, 1), uniformly
        # distributed, then
        #
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
        #
        # are two *independent* variables with normal distribution
        # (mu = 0, sigma = 1).
        # (Lambert Meertens)
        # (corrected version; bug discovered by Mike Miller, fixed by LM)

        # Multithreading note: When two threads call this function
        # simultaneously, it is possible that they will receive the
        # same return value.  The window is very small though.  To
        # avoid this, you have to use a lock around all calls.  (I
        # didn't want to slow this down in the serial case by using a
        # lock here.)

        random = self.random
        z = self.gauss_next
        self.gauss_next = None
        if z is None:
            x2pi = random() * TWOPI
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
            z = _cos(x2pi) * g2rad
            self.gauss_next = _sin(x2pi) * g2rad

        return mu + z*sigma

## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
##    def betavariate(self, alpha, beta):
##        # Discrete Event Simulation in C, pp 87-88.
##
##        y = self.expovariate(alpha)
##        z = self.expovariate(1.0/beta)
##        return z/(y+z)
##
## was dead wrong, and how it probably got that way.

    def betavariate(self, alpha, beta):
        """Beta distribution.

        Conditions on the parameters are alpha > 0 and beta > 0.
        Returned values range between 0 and 1.

        """

        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = self.gammavariate(alpha, 1.)
        if y == 0:
            return 0.0
        else:
            return y / (y + self.gammavariate(beta, 1.))

## -------------------- Pareto --------------------

    def paretovariate(self, alpha):
        """Pareto distribution.  alpha is the shape parameter."""
        # Jain, pg. 495

        u = 1.0 - self.random()
        return 1.0 / pow(u, 1.0/alpha)

## -------------------- Weibull --------------------

    def weibullvariate(self, alpha, beta):
        """Weibull distribution.

        alpha is the scale parameter and beta is the shape parameter.

        """
        # Jain, pg. 499; bug fix courtesy Bill Arms

        u = 1.0 - self.random()
        return alpha * pow(-_log(u), 1.0/beta)

## -------------------- Wichmann-Hill -------------------

class WichmannHill(Random):

    VERSION = 1     # used by getstate/setstate

    def seed(self, a=None):
        """Initialize internal state from hashable object.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        If a is not None or an int or long, hash(a) is used instead.

        If a is an int or long, a is used directly.  Distinct values between
        0 and 27814431486575L inclusive are guaranteed to yield distinct
        internal states (this guarantee is specific to the default
        Wichmann-Hill generator).
        """

        if a is None:
            try:
                a = long(_hexlify(_urandom(16)), 16)
            except NotImplementedError:
                import time
                a = long(time.time() * 256) # use fractional seconds

        if not isinstance(a, (int, long)):
            a = hash(a)

        a, x = divmod(a, 30268)
        a, y = divmod(a, 30306)
        a, z = divmod(a, 30322)
        self._seed = int(x)+1, int(y)+1, int(z)+1

        self.gauss_next = None

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""

        # Wichman-Hill random number generator.
        #
        # Wichmann, B. A. & Hill, I. D. (1982)
        # Algorithm AS 183:
        # An efficient and portable pseudo-random number generator
        # Applied Statistics 31 (1982) 188-190
        #
        # see also:
        #        Correction to Algorithm AS 183
        #        Applied Statistics 33 (1984) 123
        #
        #        McLeod, A. I. (1985)
        #        A remark on Algorithm AS 183
        #        Applied Statistics 34 (1985),198-200

        # This part is thread-unsafe:
        # BEGIN CRITICAL SECTION
        x, y, z = self._seed
        x = (171 * x) % 30269
        y = (172 * y) % 30307
        z = (170 * z) % 30323
        self._seed = x, y, z
        # END CRITICAL SECTION

        # Note:  on a platform using IEEE-754 double arithmetic, this can
        # never return 0.0 (asserted by Tim; proof too long for a comment).
        return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, self._seed, self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 1:
            version, self._seed, self.gauss_next = state
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

    def jumpahead(self, n):
        """Act as if n calls to random() were made, but quickly.

        n is an int, greater than or equal to 0.

        Example use:  If you have 2 threads and know that each will
        consume no more than a million random numbers, create two Random
        objects r1 and r2, then do
            r2.setstate(r1.getstate())
            r2.jumpahead(1000000)
        Then r1 and r2 will use guaranteed-disjoint segments of the full
        period.
        """

        if not n >= 0:
            raise ValueError("n must be >= 0")
        x, y, z = self._seed
        x = int(x * pow(171, n, 30269)) % 30269
        y = int(y * pow(172, n, 30307)) % 30307
        z = int(z * pow(170, n, 30323)) % 30323
        self._seed = x, y, z

    def __whseed(self, x=0, y=0, z=0):
        """Set the Wichmann-Hill seed from (x, y, z).

        These must be integers in the range [0, 256).
        """

        if not type(x) == type(y) == type(z) == int:
            raise TypeError('seeds must be integers')
        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
            raise ValueError('seeds must be in range(0, 256)')
        if 0 == x == y == z:
            # Initialize from current time
            import time
            t = long(time.time() * 256)
            t = int((t&0xffffff) ^ (t>>24))
            t, x = divmod(t, 256)
            t, y = divmod(t, 256)
            t, z = divmod(t, 256)
        # Zero is a poor seed, so substitute 1
        self._seed = (x or 1, y or 1, z or 1)

        self.gauss_next = None

    def whseed(self, a=None):
        """Seed from hashable object's hash code.

        None or no argument seeds from current time.  It is not guaranteed
        that objects with distinct hash codes lead to distinct internal
        states.

        This is obsolete, provided for compatibility with the seed routine
        used prior to Python 2.1.  Use the .seed() method instead.
        """

        if a is None:
            self.__whseed()
            return
        a = hash(a)
        a, x = divmod(a, 256)
        a, y = divmod(a, 256)
        a, z = divmod(a, 256)
        x = (x + a) % 256 or 1
        y = (y + a) % 256 or 1
        z = (z + a) % 256 or 1
        self.__whseed(x, y, z)

## --------------- Operating System Random Source  ------------------

class SystemRandom(Random):
    """Alternate random number generator using sources provided
    by the operating system (such as /dev/urandom on Unix or
    CryptGenRandom on Windows).

     Not available on all systems (see os.urandom() for details).
    """

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""
        return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF

    def getrandbits(self, k):
        """getrandbits(k) -> x.  Generates a long int with k random bits."""
        if k <= 0:
            raise ValueError('number of bits must be greater than zero')
        if k != int(k):
            raise TypeError('number of bits should be an integer')
        bytes = (k + 7) // 8                    # bits / 8 and rounded up
        x = long(_hexlify(_urandom(bytes)), 16)
        return x >> (bytes * 8 - k)             # trim excess bits

    def _stub(self, *args, **kwds):
        "Stub method.  Not used for a system random number generator."
        return None
    seed = jumpahead = _stub

    def _notimplemented(self, *args, **kwds):
        "Method should not be called for a system random number generator."
        raise NotImplementedError('System entropy source does not have state.')
    getstate = setstate = _notimplemented

## -------------------- test program --------------------

def _test_generator(n, func, args):
    import time
    print n, 'times', func.__name__
    total = 0.0
    sqsum = 0.0
    smallest = 1e10
    largest = -1e10
    t0 = time.time()
    for i in range(n):
        x = func(*args)
        total += x
        sqsum = sqsum + x*x
        smallest = min(x, smallest)
        largest = max(x, largest)
    t1 = time.time()
    print round(t1-t0, 3), 'sec,',
    avg = total/n
    stddev = _sqrt(sqsum/n - avg*avg)
    print 'avg %g, stddev %g, min %g, max %g' % \
              (avg, stddev, smallest, largest)


def _test(N=2000):
    _test_generator(N, random, ())
    _test_generator(N, normalvariate, (0.0, 1.0))
    _test_generator(N, lognormvariate, (0.0, 1.0))
    _test_generator(N, vonmisesvariate, (0.0, 1.0))
    _test_generator(N, gammavariate, (0.01, 1.0))
    _test_generator(N, gammavariate, (0.1, 1.0))
    _test_generator(N, gammavariate, (0.1, 2.0))
    _test_generator(N, gammavariate, (0.5, 1.0))
    _test_generator(N, gammavariate, (0.9, 1.0))
    _test_generator(N, gammavariate, (1.0, 1.0))
    _test_generator(N, gammavariate, (2.0, 1.0))
    _test_generator(N, gammavariate, (20.0, 1.0))
    _test_generator(N, gammavariate, (200.0, 1.0))
    _test_generator(N, gauss, (0.0, 1.0))
    _test_generator(N, betavariate, (3.0, 3.0))
    _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))

# Create one instance, seeded from current time, and export its methods
# as module-level functions.  The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.

_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
jumpahead = _inst.jumpahead
getrandbits = _inst.getrandbits

if __name__ == '__main__':
    _test()

Filemanager

Name Type Size Permission Actions
bsddb Folder 0755
compiler Folder 0755
config Folder 0755
ctypes Folder 0755
curses Folder 0755
distutils Folder 0755
email Folder 0755
encodings Folder 0755
ensurepip Folder 0755
hotshot Folder 0755
idlelib Folder 0755
importlib Folder 0755
json Folder 0755
lib-dynload Folder 0755
lib2to3 Folder 0755
logging Folder 0755
multiprocessing Folder 0755
plat-linux2 Folder 0755
pydoc_data Folder 0755
site-packages Folder 0755
sqlite3 Folder 0755
test Folder 0755
unittest Folder 0755
wsgiref Folder 0755
xml Folder 0755
BaseHTTPServer.py File 22.21 KB 0644
BaseHTTPServer.pyc File 21.47 KB 0644
BaseHTTPServer.pyo File 21.47 KB 0644
Bastion.py File 5.61 KB 0644
Bastion.pyc File 6.69 KB 0644
Bastion.pyo File 6.69 KB 0644
CGIHTTPServer.py File 12.78 KB 0644
CGIHTTPServer.pyc File 10.92 KB 0644
CGIHTTPServer.pyo File 10.92 KB 0644
ConfigParser.py File 27.1 KB 0644
ConfigParser.pyc File 25.37 KB 0644
ConfigParser.pyo File 25.37 KB 0644
Cookie.py File 25.92 KB 0644
Cookie.pyc File 22.61 KB 0644
Cookie.pyo File 22.61 KB 0644
DocXMLRPCServer.py File 10.52 KB 0644
DocXMLRPCServer.pyc File 10.2 KB 0644
DocXMLRPCServer.pyo File 10.09 KB 0644
HTMLParser.py File 16.77 KB 0644
HTMLParser.pyc File 13.81 KB 0644
HTMLParser.pyo File 13.51 KB 0644
MimeWriter.py File 6.33 KB 0644
MimeWriter.pyc File 7.31 KB 0644
MimeWriter.pyo File 7.31 KB 0644
Queue.py File 8.38 KB 0644
Queue.pyc File 9.56 KB 0644
Queue.pyo File 9.56 KB 0644
SimpleHTTPServer.py File 7.81 KB 0644
SimpleHTTPServer.pyc File 7.96 KB 0644
SimpleHTTPServer.pyo File 7.96 KB 0644
SimpleXMLRPCServer.py File 25.21 KB 0644
SimpleXMLRPCServer.pyc File 22.78 KB 0644
SimpleXMLRPCServer.pyo File 22.78 KB 0644
SocketServer.py File 23.39 KB 0644
SocketServer.pyc File 24.25 KB 0644
SocketServer.pyo File 24.25 KB 0644
StringIO.py File 10.41 KB 0644
StringIO.pyc File 11.45 KB 0644
StringIO.pyo File 11.45 KB 0644
UserDict.py File 6.89 KB 0644
UserDict.pyc File 10.05 KB 0644
UserDict.pyo File 10.05 KB 0644
UserList.py File 3.56 KB 0644
UserList.pyc File 6.85 KB 0644
UserList.pyo File 6.85 KB 0644
UserString.py File 9.46 KB 0755
UserString.pyc File 15.38 KB 0644
UserString.pyo File 15.38 KB 0644
_LWPCookieJar.py File 6.4 KB 0644
_LWPCookieJar.pyc File 5.38 KB 0644
_LWPCookieJar.pyo File 5.38 KB 0644
_MozillaCookieJar.py File 5.66 KB 0644
_MozillaCookieJar.pyc File 4.41 KB 0644
_MozillaCookieJar.pyo File 4.37 KB 0644
__future__.py File 4.28 KB 0644
__future__.pyc File 4.2 KB 0644
__future__.pyo File 4.2 KB 0644
__phello__.foo.py File 64 B 0644
__phello__.foo.pyc File 138 B 0644
__phello__.foo.pyo File 138 B 0644
_abcoll.py File 18.18 KB 0644
_abcoll.pyc File 26.4 KB 0644
_abcoll.pyo File 26.4 KB 0644
_osx_support.py File 18.65 KB 0644
_osx_support.pyc File 11.72 KB 0644
_osx_support.pyo File 11.72 KB 0644
_pyio.py File 68 KB 0644
_pyio.pyc File 65.41 KB 0644
_pyio.pyo File 65.41 KB 0644
_strptime.py File 20.24 KB 0644
_strptime.pyc File 15.07 KB 0644
_strptime.pyo File 15.07 KB 0644
_sysconfigdata.py File 20.65 KB 0644
_sysconfigdata.pyc File 23.69 KB 0644
_sysconfigdata.pyo File 23.69 KB 0644
_threading_local.py File 7.09 KB 0644
_threading_local.pyc File 6.34 KB 0644
_threading_local.pyo File 6.34 KB 0644
_weakrefset.py File 5.77 KB 0644
_weakrefset.pyc File 10.06 KB 0644
_weakrefset.pyo File 10.06 KB 0644
abc.py File 6.98 KB 0644
abc.pyc File 6.14 KB 0644
abc.pyo File 6.08 KB 0644
aifc.py File 33.77 KB 0644
aifc.pyc File 30.67 KB 0644
aifc.pyo File 30.67 KB 0644
antigravity.py File 60 B 0644
antigravity.pyc File 216 B 0644
antigravity.pyo File 216 B 0644
anydbm.py File 2.6 KB 0644
anydbm.pyc File 2.77 KB 0644
anydbm.pyo File 2.77 KB 0644
argparse.py File 87.14 KB 0644
argparse.pyc File 64.83 KB 0644
argparse.pyo File 64.67 KB 0644
ast.py File 11.53 KB 0644
ast.pyc File 12.94 KB 0644
ast.pyo File 12.94 KB 0644
asynchat.py File 11.31 KB 0644
asynchat.pyc File 8.98 KB 0644
asynchat.pyo File 8.98 KB 0644
asyncore.py File 20.45 KB 0644
asyncore.pyc File 19.2 KB 0644
asyncore.pyo File 19.2 KB 0644
atexit.py File 1.67 KB 0644
atexit.pyc File 2.23 KB 0644
atexit.pyo File 2.23 KB 0644
audiodev.py File 7.42 KB 0644
audiodev.pyc File 8.61 KB 0644
audiodev.pyo File 8.61 KB 0644
base64.py File 11.53 KB 0755
base64.pyc File 11.26 KB 0644
base64.pyo File 11.26 KB 0644
bdb.py File 21.21 KB 0644
bdb.pyc File 19.43 KB 0644
bdb.pyo File 19.43 KB 0644
binhex.py File 14.35 KB 0644
binhex.pyc File 15.75 KB 0644
binhex.pyo File 15.75 KB 0644
bisect.py File 2.53 KB 0644
bisect.pyc File 3.06 KB 0644
bisect.pyo File 3.06 KB 0644
cProfile.py File 6.42 KB 0755
cProfile.pyc File 6.42 KB 0644
cProfile.pyo File 6.42 KB 0644
calendar.py File 22.84 KB 0644
calendar.pyc File 28.26 KB 0644
calendar.pyo File 28.26 KB 0644
cgi.py File 34.96 KB 0755
cgi.pyc File 33.24 KB 0644
cgi.pyo File 33.24 KB 0644
cgitb.py File 11.89 KB 0644
cgitb.pyc File 12.08 KB 0644
cgitb.pyo File 12.08 KB 0644
chunk.py File 5.29 KB 0644
chunk.pyc File 5.61 KB 0644
chunk.pyo File 5.61 KB 0644
cmd.py File 14.67 KB 0644
cmd.pyc File 13.98 KB 0644
cmd.pyo File 13.98 KB 0644
code.py File 9.95 KB 0644
code.pyc File 10.29 KB 0644
code.pyo File 10.29 KB 0644
codecs.py File 35.3 KB 0644
codecs.pyc File 37.15 KB 0644
codecs.pyo File 37.15 KB 0644
codeop.py File 5.86 KB 0644
codeop.pyc File 6.57 KB 0644
codeop.pyo File 6.57 KB 0644
collections.py File 27.15 KB 0644
collections.pyc File 26.21 KB 0644
collections.pyo File 26.16 KB 0644
colorsys.py File 3.6 KB 0644
colorsys.pyc File 4 KB 0644
colorsys.pyo File 4 KB 0644
commands.py File 2.49 KB 0644
commands.pyc File 2.49 KB 0644
commands.pyo File 2.49 KB 0644
compileall.py File 7.58 KB 0644
compileall.pyc File 6.93 KB 0644
compileall.pyo File 6.93 KB 0644
contextlib.py File 4.32 KB 0644
contextlib.pyc File 4.5 KB 0644
contextlib.pyo File 4.5 KB 0644
cookielib.py File 63.95 KB 0644
cookielib.pyc File 54.67 KB 0644
cookielib.pyo File 54.49 KB 0644
copy.py File 11.26 KB 0644
copy.pyc File 12.21 KB 0644
copy.pyo File 12.13 KB 0644
copy_reg.py File 6.81 KB 0644
copy_reg.pyc File 5.19 KB 0644
copy_reg.pyo File 5.14 KB 0644
crypt.py File 2.24 KB 0644
crypt.pyc File 2.95 KB 0644
crypt.pyo File 2.95 KB 0644
csv.py File 16.32 KB 0644
csv.pyc File 13.56 KB 0644
csv.pyo File 13.56 KB 0644
dbhash.py File 498 B 0644
dbhash.pyc File 744 B 0644
dbhash.pyo File 744 B 0644
decimal.py File 216.73 KB 0644
decimal.pyc File 171.36 KB 0644
decimal.pyo File 171.36 KB 0644
difflib.py File 80.4 KB 0644
difflib.pyc File 61.13 KB 0644
difflib.pyo File 61.08 KB 0644
dircache.py File 1.1 KB 0644
dircache.pyc File 1.59 KB 0644
dircache.pyo File 1.59 KB 0644
dis.py File 6.35 KB 0644
dis.pyc File 6.18 KB 0644
dis.pyo File 6.18 KB 0644
doctest.py File 102.63 KB 0644
doctest.pyc File 83.21 KB 0644
doctest.pyo File 82.93 KB 0644
dumbdbm.py File 8.93 KB 0644
dumbdbm.pyc File 6.83 KB 0644
dumbdbm.pyo File 6.83 KB 0644
dummy_thread.py File 4.31 KB 0644
dummy_thread.pyc File 5.46 KB 0644
dummy_thread.pyo File 5.46 KB 0644
dummy_threading.py File 2.74 KB 0644
dummy_threading.pyc File 1.27 KB 0644
dummy_threading.pyo File 1.27 KB 0644
filecmp.py File 9.36 KB 0644
filecmp.pyc File 9.65 KB 0644
filecmp.pyo File 9.65 KB 0644
fileinput.py File 13.42 KB 0644
fileinput.pyc File 14.54 KB 0644
fileinput.pyo File 14.54 KB 0644
fnmatch.py File 3.24 KB 0644
fnmatch.pyc File 3.61 KB 0644
fnmatch.pyo File 3.61 KB 0644
formatter.py File 14.56 KB 0644
formatter.pyc File 19.71 KB 0644
formatter.pyo File 19.71 KB 0644
fpformat.py File 4.62 KB 0644
fpformat.pyc File 4.69 KB 0644
fpformat.pyo File 4.69 KB 0644
fractions.py File 21.87 KB 0644
fractions.pyc File 19.74 KB 0644
fractions.pyo File 19.74 KB 0644
ftplib.py File 37.3 KB 0644
ftplib.pyc File 34.82 KB 0644
ftplib.pyo File 34.82 KB 0644
functools.py File 4.69 KB 0644
functools.pyc File 6.85 KB 0644
functools.pyo File 6.85 KB 0644
genericpath.py File 3.13 KB 0644
genericpath.pyc File 3.57 KB 0644
genericpath.pyo File 3.57 KB 0644
getopt.py File 7.15 KB 0644
getopt.pyc File 6.63 KB 0644
getopt.pyo File 6.58 KB 0644
getpass.py File 5.43 KB 0644
getpass.pyc File 4.72 KB 0644
getpass.pyo File 4.72 KB 0644
gettext.py File 22.13 KB 0644
gettext.pyc File 18.17 KB 0644
gettext.pyo File 18.17 KB 0644
glob.py File 3.04 KB 0644
glob.pyc File 2.98 KB 0644
glob.pyo File 2.98 KB 0644
gzip.py File 18.58 KB 0644
gzip.pyc File 15.26 KB 0644
gzip.pyo File 15.26 KB 0644
hashlib.py File 7.66 KB 0644
hashlib.pyc File 6.86 KB 0644
hashlib.pyo File 6.86 KB 0644
heapq.py File 17.87 KB 0644
heapq.pyc File 14.45 KB 0644
heapq.pyo File 14.45 KB 0644
hmac.py File 4.48 KB 0644
hmac.pyc File 4.56 KB 0644
hmac.pyo File 4.56 KB 0644
htmlentitydefs.py File 17.63 KB 0644
htmlentitydefs.pyc File 6.23 KB 0644
htmlentitydefs.pyo File 6.23 KB 0644
htmllib.py File 12.57 KB 0644
htmllib.pyc File 20.99 KB 0644
htmllib.pyo File 20.99 KB 0644
httplib.py File 51.07 KB 0644
httplib.pyc File 37.88 KB 0644
httplib.pyo File 37.7 KB 0644
ihooks.py File 18.54 KB 0644
ihooks.pyc File 21.75 KB 0644
ihooks.pyo File 21.75 KB 0644
imaplib.py File 47.23 KB 0644
imaplib.pyc File 45.19 KB 0644
imaplib.pyo File 42.49 KB 0644
imghdr.py File 3.46 KB 0644
imghdr.pyc File 4.93 KB 0644
imghdr.pyo File 4.93 KB 0644
imputil.py File 25.16 KB 0644
imputil.pyc File 15.74 KB 0644
imputil.pyo File 15.57 KB 0644
inspect.py File 42 KB 0644
inspect.pyc File 40.16 KB 0644
inspect.pyo File 40.16 KB 0644
io.py File 3.24 KB 0644
io.pyc File 3.57 KB 0644
io.pyo File 3.57 KB 0644
keyword.py File 1.95 KB 0755
keyword.pyc File 2.08 KB 0644
keyword.pyo File 2.08 KB 0644
linecache.py File 3.93 KB 0644
linecache.pyc File 3.27 KB 0644
linecache.pyo File 3.27 KB 0644
locale.py File 100.42 KB 0644
locale.pyc File 55.69 KB 0644
locale.pyo File 55.69 KB 0644
macpath.py File 6.14 KB 0644
macpath.pyc File 7.74 KB 0644
macpath.pyo File 7.74 KB 0644
macurl2path.py File 2.67 KB 0644
macurl2path.pyc File 2.24 KB 0644
macurl2path.pyo File 2.24 KB 0644
mailbox.py File 79.34 KB 0644
mailbox.pyc File 77.7 KB 0644
mailbox.pyo File 77.65 KB 0644
mailcap.py File 7.25 KB 0644
mailcap.pyc File 7.08 KB 0644
mailcap.pyo File 7.08 KB 0644
markupbase.py File 14.3 KB 0644
markupbase.pyc File 9.27 KB 0644
markupbase.pyo File 9.07 KB 0644
md5.py File 358 B 0644
md5.pyc File 391 B 0644
md5.pyo File 391 B 0644
mhlib.py File 32.65 KB 0644
mhlib.pyc File 33.98 KB 0644
mhlib.pyo File 33.98 KB 0644
mimetools.py File 7 KB 0644
mimetools.pyc File 8.26 KB 0644
mimetools.pyo File 8.26 KB 0644
mimetypes.py File 20.54 KB 0644
mimetypes.pyc File 18.3 KB 0644
mimetypes.pyo File 18.3 KB 0644
mimify.py File 14.67 KB 0755
mimify.pyc File 11.91 KB 0644
mimify.pyo File 11.91 KB 0644
modulefinder.py File 23.89 KB 0644
modulefinder.pyc File 19.12 KB 0644
modulefinder.pyo File 19.04 KB 0644
multifile.py File 4.71 KB 0644
multifile.pyc File 5.48 KB 0644
multifile.pyo File 5.44 KB 0644
mutex.py File 1.83 KB 0644
mutex.pyc File 2.55 KB 0644
mutex.pyo File 2.55 KB 0644
netrc.py File 5.75 KB 0644
netrc.pyc File 4.72 KB 0644
netrc.pyo File 4.72 KB 0644
new.py File 610 B 0644
new.pyc File 875 B 0644
new.pyo File 875 B 0644
nntplib.py File 20.97 KB 0644
nntplib.pyc File 21.11 KB 0644
nntplib.pyo File 21.11 KB 0644
ntpath.py File 18.97 KB 0644
ntpath.pyc File 13.1 KB 0644
ntpath.pyo File 13.1 KB 0644
nturl2path.py File 2.36 KB 0644
nturl2path.pyc File 1.81 KB 0644
nturl2path.pyo File 1.81 KB 0644
numbers.py File 10.08 KB 0644
numbers.pyc File 14.47 KB 0644
numbers.pyo File 14.47 KB 0644
opcode.py File 5.35 KB 0644
opcode.pyc File 6.06 KB 0644
opcode.pyo File 6.06 KB 0644
optparse.py File 59.77 KB 0644
optparse.pyc File 54.41 KB 0644
optparse.pyo File 54.33 KB 0644
os.py File 25.3 KB 0644
os.pyc File 25.76 KB 0644
os.pyo File 25.76 KB 0644
os2emxpath.py File 4.53 KB 0644
os2emxpath.pyc File 4.53 KB 0644
os2emxpath.pyo File 4.53 KB 0644
pdb.doc File 7.73 KB 0644
pdb.py File 45.01 KB 0755
pdb.pyc File 44.09 KB 0644
pdb.pyo File 44.09 KB 0644
pickle.py File 44.42 KB 0644
pickle.pyc File 38.98 KB 0644
pickle.pyo File 38.79 KB 0644
pickletools.py File 72.78 KB 0644
pickletools.pyc File 56.1 KB 0644
pickletools.pyo File 55.26 KB 0644
pipes.py File 9.36 KB 0644
pipes.pyc File 9.29 KB 0644
pipes.pyo File 9.29 KB 0644
pkgutil.py File 19.77 KB 0644
pkgutil.pyc File 18.93 KB 0644
pkgutil.pyo File 18.93 KB 0644
platform.py File 51.55 KB 0755
platform.pyc File 37.7 KB 0644
platform.pyo File 37.7 KB 0644
plistlib.py File 14.83 KB 0644
plistlib.pyc File 19.54 KB 0644
plistlib.pyo File 19.46 KB 0644
popen2.py File 8.22 KB 0644
popen2.pyc File 9.02 KB 0644
popen2.pyo File 8.98 KB 0644
poplib.py File 12.52 KB 0644
poplib.pyc File 13.45 KB 0644
poplib.pyo File 13.45 KB 0644
posixfile.py File 7.82 KB 0644
posixfile.pyc File 7.63 KB 0644
posixfile.pyo File 7.63 KB 0644
posixpath.py File 13.96 KB 0644
posixpath.pyc File 11.49 KB 0644
posixpath.pyo File 11.49 KB 0644
pprint.py File 11.5 KB 0644
pprint.pyc File 10.2 KB 0644
pprint.pyo File 10.02 KB 0644
profile.py File 22.24 KB 0755
profile.pyc File 16.57 KB 0644
profile.pyo File 16.32 KB 0644
pstats.py File 26.09 KB 0644
pstats.pyc File 25.19 KB 0644
pstats.pyo File 25.19 KB 0644
pty.py File 4.94 KB 0644
pty.pyc File 4.98 KB 0644
pty.pyo File 4.98 KB 0644
py_compile.py File 5.8 KB 0644
py_compile.pyc File 6.37 KB 0644
py_compile.pyo File 6.37 KB 0644
pyclbr.py File 13.07 KB 0644
pyclbr.pyc File 9.59 KB 0644
pyclbr.pyo File 9.59 KB 0644
pydoc.py File 93.42 KB 0755
pydoc.pyc File 92.69 KB 0644
pydoc.pyo File 92.63 KB 0644
quopri.py File 6.8 KB 0755
quopri.pyc File 6.56 KB 0644
quopri.pyo File 6.56 KB 0644
random.py File 31.7 KB 0644
random.pyc File 25.65 KB 0644
random.pyo File 25.65 KB 0644
re.py File 13.11 KB 0644
re.pyc File 13.37 KB 0644
re.pyo File 13.37 KB 0644
repr.py File 4.2 KB 0644
repr.pyc File 5.47 KB 0644
repr.pyo File 5.47 KB 0644
rexec.py File 19.68 KB 0644
rexec.pyc File 24 KB 0644
rexec.pyo File 24 KB 0644
rfc822.py File 32.76 KB 0644
rfc822.pyc File 31.83 KB 0644
rfc822.pyo File 31.83 KB 0644
rlcompleter.py File 5.85 KB 0644
rlcompleter.pyc File 6.04 KB 0644
rlcompleter.pyo File 6.04 KB 0644
robotparser.py File 7.51 KB 0644
robotparser.pyc File 8.12 KB 0644
robotparser.pyo File 8.12 KB 0644
runpy.py File 10.82 KB 0644
runpy.pyc File 8.85 KB 0644
runpy.pyo File 8.85 KB 0644
sched.py File 4.97 KB 0644
sched.pyc File 4.99 KB 0644
sched.pyo File 4.99 KB 0644
sets.py File 18.6 KB 0644
sets.pyc File 17.21 KB 0644
sets.pyo File 17.21 KB 0644
sgmllib.py File 17.46 KB 0644
sgmllib.pyc File 15.67 KB 0644
sgmllib.pyo File 15.67 KB 0644
sha.py File 393 B 0644
sha.pyc File 434 B 0644
sha.pyo File 434 B 0644
shelve.py File 7.99 KB 0644
shelve.pyc File 10.36 KB 0644
shelve.pyo File 10.36 KB 0644
shlex.py File 10.9 KB 0644
shlex.pyc File 7.55 KB 0644
shlex.pyo File 7.55 KB 0644
shutil.py File 19.41 KB 0644
shutil.pyc File 19.19 KB 0644
shutil.pyo File 19.19 KB 0644
site.py File 19.18 KB 0644
site.pyc File 19.35 KB 0644
site.pyo File 19.35 KB 0644
smtpd.py File 18.1 KB 0755
smtpd.pyc File 15.9 KB 0644
smtpd.pyo File 15.9 KB 0644
smtplib.py File 31.38 KB 0755
smtplib.pyc File 30.29 KB 0644
smtplib.pyo File 30.29 KB 0644
sndhdr.py File 5.83 KB 0644
sndhdr.pyc File 7.4 KB 0644
sndhdr.pyo File 7.4 KB 0644
socket.py File 20.13 KB 0644
socket.pyc File 16.15 KB 0644
socket.pyo File 16.07 KB 0644
sre.py File 384 B 0644
sre.pyc File 532 B 0644
sre.pyo File 532 B 0644
sre_compile.py File 19.36 KB 0644
sre_compile.pyc File 12.46 KB 0644
sre_compile.pyo File 12.3 KB 0644
sre_constants.py File 7.03 KB 0644
sre_constants.pyc File 6.11 KB 0644
sre_constants.pyo File 6.11 KB 0644
sre_parse.py File 29.98 KB 0644
sre_parse.pyc File 21.12 KB 0644
sre_parse.pyo File 21.12 KB 0644
ssl.py File 36.58 KB 0644
ssl.pyc File 32.24 KB 0644
ssl.pyo File 32.24 KB 0644
stat.py File 1.8 KB 0644
stat.pyc File 2.81 KB 0644
stat.pyo File 2.81 KB 0644
statvfs.py File 898 B 0644
statvfs.pyc File 633 B 0644
statvfs.pyo File 633 B 0644
string.py File 21.04 KB 0644
string.pyc File 20.63 KB 0644
string.pyo File 20.63 KB 0644
stringold.py File 12.16 KB 0644
stringold.pyc File 12.6 KB 0644
stringold.pyo File 12.6 KB 0644
stringprep.py File 13.21 KB 0644
stringprep.pyc File 14.4 KB 0644
stringprep.pyo File 14.33 KB 0644
struct.py File 82 B 0644
struct.pyc File 252 B 0644
struct.pyo File 252 B 0644
subprocess.py File 49.34 KB 0644
subprocess.pyc File 32.32 KB 0644
subprocess.pyo File 32.32 KB 0644
sunau.py File 16.82 KB 0644
sunau.pyc File 18.57 KB 0644
sunau.pyo File 18.57 KB 0644
sunaudio.py File 1.37 KB 0644
sunaudio.pyc File 2 KB 0644
sunaudio.pyo File 2 KB 0644
symbol.py File 2.01 KB 0755
symbol.pyc File 2.98 KB 0644
symbol.pyo File 2.98 KB 0644
symtable.py File 7.26 KB 0644
symtable.pyc File 12.14 KB 0644
symtable.pyo File 12.02 KB 0644
sysconfig.py File 22.32 KB 0644
sysconfig.pyc File 17.73 KB 0644
sysconfig.pyo File 17.73 KB 0644
tabnanny.py File 11.07 KB 0755
tabnanny.pyc File 8.31 KB 0644
tabnanny.pyo File 8.31 KB 0644
tarfile.py File 88.45 KB 0644
tarfile.pyc File 76.54 KB 0644
tarfile.pyo File 76.54 KB 0644
telnetlib.py File 26.4 KB 0644
telnetlib.pyc File 23.03 KB 0644
telnetlib.pyo File 23.03 KB 0644
tempfile.py File 19.09 KB 0644
tempfile.pyc File 20.55 KB 0644
tempfile.pyo File 20.55 KB 0644
textwrap.py File 16.88 KB 0644
textwrap.pyc File 11.99 KB 0644
textwrap.pyo File 11.9 KB 0644
this.py File 1002 B 0644
this.pyc File 1.2 KB 0644
this.pyo File 1.2 KB 0644
threading.py File 46.17 KB 0644
threading.pyc File 42.97 KB 0644
threading.pyo File 40.84 KB 0644
timeit.py File 12.49 KB 0755
timeit.pyc File 12.06 KB 0644
timeit.pyo File 12.06 KB 0644
toaiff.py File 3.07 KB 0644
toaiff.pyc File 3.08 KB 0644
toaiff.pyo File 3.08 KB 0644
token.py File 2.85 KB 0644
token.pyc File 3.79 KB 0644
token.pyo File 3.79 KB 0644
tokenize.py File 17.07 KB 0644
tokenize.pyc File 14.37 KB 0644
tokenize.pyo File 14.31 KB 0644
trace.py File 29.19 KB 0755
trace.pyc File 22.69 KB 0644
trace.pyo File 22.63 KB 0644
traceback.py File 11.02 KB 0644
traceback.pyc File 11.66 KB 0644
traceback.pyo File 11.66 KB 0644
tty.py File 879 B 0644
tty.pyc File 1.32 KB 0644
tty.pyo File 1.32 KB 0644
types.py File 2.04 KB 0644
types.pyc File 2.75 KB 0644
types.pyo File 2.75 KB 0644
urllib.py File 58.82 KB 0644
urllib.pyc File 51.35 KB 0644
urllib.pyo File 51.25 KB 0644
urllib2.py File 51.31 KB 0644
urllib2.pyc File 47.8 KB 0644
urllib2.pyo File 47.71 KB 0644
urlparse.py File 16.29 KB 0644
urlparse.pyc File 15.51 KB 0644
urlparse.pyo File 15.51 KB 0644
user.py File 1.59 KB 0644
user.pyc File 1.7 KB 0644
user.pyo File 1.7 KB 0644
uu.py File 6.54 KB 0755
uu.pyc File 4.35 KB 0644
uu.pyo File 4.35 KB 0644
uuid.py File 22.63 KB 0644
uuid.pyc File 23.22 KB 0644
uuid.pyo File 23.11 KB 0644
warnings.py File 14.48 KB 0644
warnings.pyc File 13.49 KB 0644
warnings.pyo File 12.71 KB 0644
wave.py File 18.15 KB 0644
wave.pyc File 20.19 KB 0644
wave.pyo File 20.05 KB 0644
weakref.py File 14.48 KB 0644
weakref.pyc File 16.73 KB 0644
weakref.pyo File 16.73 KB 0644
webbrowser.py File 22.19 KB 0755
webbrowser.pyc File 19.86 KB 0644
webbrowser.pyo File 19.81 KB 0644
whichdb.py File 3.31 KB 0644
whichdb.pyc File 2.21 KB 0644
whichdb.pyo File 2.21 KB 0644
wsgiref.egg-info File 187 B 0644
xdrlib.py File 5.93 KB 0644
xdrlib.pyc File 10.2 KB 0644
xdrlib.pyo File 10.2 KB 0644
xmllib.py File 34.05 KB 0644
xmllib.pyc File 26.9 KB 0644
xmllib.pyo File 26.9 KB 0644
xmlrpclib.py File 50.91 KB 0644
xmlrpclib.pyc File 44.81 KB 0644
xmlrpclib.pyo File 44.63 KB 0644
zipfile.py File 58.08 KB 0644
zipfile.pyc File 41.92 KB 0644
zipfile.pyo File 41.92 KB 0644