3 \( � @ s� d Z ddlmZmZ dddddgZG dd� ded �ZG d d� de�Zeje� G dd� de�Z e je � G dd� de �ZG d d� de�Zeje � dS )z~Abstract Base Classes (ABCs) for numbers, according to PEP 3141. TODO: Fill out more detailed documentation on the operators.� )�ABCMeta�abstractmethod�Number�Complex�Real�Rational�Integralc @ s e Zd ZdZf ZdZdS )r z�All numbers inherit from this class. If you just want to check if an argument x is a number, without caring what kind, use isinstance(x, Number). N)�__name__� __module__�__qualname__�__doc__� __slots__�__hash__� r r �/usr/lib64/python3.6/numbers.pyr s )� metaclassc @ s� e Zd ZdZf Zedd� �Zdd� Zeedd� ��Z eedd � ��Z ed d� �Zedd � �Zedd� �Z edd� �Zdd� Zdd� Zedd� �Zedd� �Zedd� �Zedd� �Zedd� �Zed d!� �Zed"d#� �Zed$d%� �Zed&d'� �Zd(S ))r aa Complex defines the operations that work on the builtin complex type. In short, those are: a conversion to complex, .real, .imag, +, -, *, /, abs(), .conjugate, ==, and !=. If it is given heterogenous arguments, and doesn't have special knowledge about them, it should fall back to the builtin complex type as described below. c C s dS )z<Return a builtin complex instance. Called for complex(self).Nr )�selfr r r �__complex__- s zComplex.__complex__c C s | dkS )z)True if self != 0. Called for bool(self).r r )r r r r �__bool__1 s zComplex.__bool__c C s t �dS )zXRetrieve the real component of this number. This should subclass Real. N)�NotImplementedError)r r r r �real5 s zComplex.realc C s t �dS )z]Retrieve the imaginary component of this number. This should subclass Real. N)r )r r r r �imag>