3 \T� � $ @ sJ d Z ddddddddd d ddd ddddddddddddddddddd d!d"d#d$g$ZeZd%Zd&Zd'Zd(d)lZd(d)lZ d(d)l Z yd(d*lmZ e dd+�ZW n ek r� d,d-� ZY nX dZdZdZdZdZdZdZdZd.Ze jd�kr�d2Zd2Zd�Znd3Zd3Zd�Zeed1 ZG d4d� de�ZG d5d� de�Z G d6d � d e�Z!G d7d� de!�Z"G d8d � d ee#�Z$G d9d� de!�Z%G d:d� de!e#�Z&G d;d� de�Z'G d<d� de!�Z(G d=d� de�Z)G d>d � d e�Z*G d?d� de'e)�Z+G d@d� de'e)e*�Z,G dAd� dee-�Z.e e$e'e+e)e,e!e*e.g Z/e"e!e%e!e&e!e(e!iZ0eeeeeeeefZ1yd(d)l2Z2W n. ek �rh G dBdC� dCe3�Z4e4� Z2[4Y nX y e2j5 W n> e6k �r� e7e2j8� dD��r�e2j8� `9dEd� Z:dFd� Z;Y n6X e2j5� Z5e7e5dD��r�e5`9e5fdGd�Z;e5fdHd�Z:[2[5d�dId�Z<G dJd� de3�Z=d�dLdM�Z>e j?j@e=� G dNdO� dOe3�ZAG dPd� de3�ZBG dQdR� dRe3�ZCd�dSdT�ZDeEjFZGdUdV� ZHdWdX� ZIdYdZ� ZJd[d\� ZKd�d^d_�ZLd`da� ZMdbdc� ZNG ddde� dee3�ZOeO� jPZQd�dfdg�ZRdhdi� ZSdjdk� ZTdldmdndodpdqdrdsdtdu� fdvdw�ZUd�dxdy�ZVd�dzd{�ZWeBd|ee$e+e!gg d}d�d1d(d~�ZXeBdee$e+e!e e,gg d��ZYeBdeg g d��ZZd(d)l[Z[e[j\d�e[j]e[j^B �j_Z`e[j\d��j_Zae[j\d��j_Zbe[j\d�e[j]e[jcB �Zd[[yd(d)leZfW n ek �r� Y nX d�d�d��Zgd�d�� Zhd�d�� Zid�d�d��Zjd�d�� Zkd�d�� Zle=d��Zme=d��Zne=d��Zoe=d(�Zpe=d1�Zqe=d��ZremenfZse jtjuZve jtjwZxe jtjyZze{dsevd/ ev�Z|[ d)S )�a� This is an implementation of decimal floating point arithmetic based on the General Decimal Arithmetic Specification: http://speleotrove.com/decimal/decarith.html and IEEE standard 854-1987: http://en.wikipedia.org/wiki/IEEE_854-1987 Decimal floating point has finite precision with arbitrarily large bounds. The purpose of this module is to support arithmetic using familiar "schoolhouse" rules and to avoid some of the tricky representation issues associated with binary floating point. The package is especially useful for financial applications or for contexts where users have expectations that are at odds with binary floating point (for instance, in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected Decimal('0.00')). Here are some examples of using the decimal module: >>> from decimal import * >>> setcontext(ExtendedContext) >>> Decimal(0) Decimal('0') >>> Decimal('1') Decimal('1') >>> Decimal('-.0123') Decimal('-0.0123') >>> Decimal(123456) Decimal('123456') >>> Decimal('123.45e12345678') Decimal('1.2345E+12345680') >>> Decimal('1.33') + Decimal('1.27') Decimal('2.60') >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41') Decimal('-2.20') >>> dig = Decimal(1) >>> print(dig / Decimal(3)) 0.333333333 >>> getcontext().prec = 18 >>> print(dig / Decimal(3)) 0.333333333333333333 >>> print(dig.sqrt()) 1 >>> print(Decimal(3).sqrt()) 1.73205080756887729 >>> print(Decimal(3) ** 123) 4.85192780976896427E+58 >>> inf = Decimal(1) / Decimal(0) >>> print(inf) Infinity >>> neginf = Decimal(-1) / Decimal(0) >>> print(neginf) -Infinity >>> print(neginf + inf) NaN >>> print(neginf * inf) -Infinity >>> print(dig / 0) Infinity >>> getcontext().traps[DivisionByZero] = 1 >>> print(dig / 0) Traceback (most recent call last): ... ... ... decimal.DivisionByZero: x / 0 >>> c = Context() >>> c.traps[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> c.divide(Decimal(0), Decimal(0)) Decimal('NaN') >>> c.traps[InvalidOperation] = 1 >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> print(c.flags[InvalidOperation]) 0 >>> print(c.divide(Decimal(0), Decimal(0))) Traceback (most recent call last): ... ... ... decimal.InvalidOperation: 0 / 0 >>> print(c.flags[InvalidOperation]) 1 >>> c.flags[InvalidOperation] = 0 >>> c.traps[InvalidOperation] = 0 >>> print(c.divide(Decimal(0), Decimal(0))) NaN >>> print(c.flags[InvalidOperation]) 1 >>> �Decimal�Context�DecimalTuple�DefaultContext�BasicContext�ExtendedContext�DecimalException�Clamped�InvalidOperation�DivisionByZero�Inexact�Rounded� Subnormal�Overflow� Underflow�FloatOperation�DivisionImpossible�InvalidContext�ConversionSyntax�DivisionUndefined� ROUND_DOWN� ROUND_HALF_UP�ROUND_HALF_EVEN� ROUND_CEILING�ROUND_FLOOR�ROUND_UP�ROUND_HALF_DOWN� ROUND_05UP� setcontext� getcontext�localcontext�MAX_PREC�MAX_EMAX�MIN_EMIN� MIN_ETINY�HAVE_THREADSZdecimalz1.70z2.4.2� N)� namedtuplezsign digits exponentc G s | S )N� )�argsr'